BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 26435459)

  • 1. Value of transverse relaxometry difference methods for iron in human brain.
    Uddin MN; Lebel RM; Wilman AH
    Magn Reson Imaging; 2016 Jan; 34(1):51-9. PubMed ID: 26435459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T.
    Sedlacik J; Boelmans K; Löbel U; Holst B; Siemonsen S; Fiehler J
    Neuroimage; 2014 Jan; 84():1032-41. PubMed ID: 24004692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping.
    Bilgic B; Pfefferbaum A; Rohlfing T; Sullivan EV; Adalsteinsson E
    Neuroimage; 2012 Feb; 59(3):2625-35. PubMed ID: 21925274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7T.
    Mitsumori F; Watanabe H; Takaya N
    Magn Reson Med; 2009 Nov; 62(5):1326-30. PubMed ID: 19780172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content.
    Gelman N; Gorell JM; Barker PB; Savage RM; Spickler EM; Windham JP; Knight RA
    Radiology; 1999 Mar; 210(3):759-67. PubMed ID: 10207479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood oxygen level-dependent magnetic resonance imaging of the kidneys: influence of spatial resolution on the apparent R2* transverse relaxation rate of renal tissue.
    Rossi C; Sharma P; Pazahr S; Alkadhi H; Nanz D; Boss A
    Invest Radiol; 2013 Sep; 48(9):671-7. PubMed ID: 23571833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the specificity of R2' to the deoxyhaemoglobin content of brain tissue: Prospective correction of macroscopic magnetic field gradients.
    Blockley NP; Stone AJ
    Neuroimage; 2016 Jul; 135():253-60. PubMed ID: 27150229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transverse relaxometry with reduced echo train lengths via stimulated echo compensation.
    Uddin MN; Marc Lebel R; Wilman AH
    Magn Reson Med; 2013 Nov; 70(5):1340-6. PubMed ID: 23325543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitations of skipping echoes for exponential T
    McPhee KC; Wilman AH
    J Magn Reson Imaging; 2018 Nov; 48(5):1432-1440. PubMed ID: 29687931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods.
    Pfefferbaum A; Adalsteinsson E; Rohlfing T; Sullivan EV
    Neuroimage; 2009 Aug; 47(2):493-500. PubMed ID: 19442747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrashort echo time imaging for quantification of hepatic iron overload: Comparison of acquisition and fitting methods via simulations, phantoms, and in vivo data.
    Tipirneni-Sajja A; Loeffler RB; Krafft AJ; Sajewski AN; Ogg RJ; Hankins JS; Hillenbrand CM
    J Magn Reson Imaging; 2019 May; 49(5):1475-1488. PubMed ID: 30358001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B0 -orientation dependent magnetic susceptibility-induced white matter contrast in the human brainstem at 11.7T.
    Aggarwal M; Kageyama Y; Li X; van Zijl PC
    Magn Reson Med; 2016 Jun; 75(6):2455-63. PubMed ID: 27018784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. R2* as a surrogate measure of ferriscan iron quantification in thalassemia.
    Chan WC; Tejani Z; Budhani F; Massey C; Haider MA
    J Magn Reson Imaging; 2014 Apr; 39(4):1007-11. PubMed ID: 24123694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7T.
    Betts MJ; Acosta-Cabronero J; Cardenas-Blanco A; Nestor PJ; Düzel E
    Neuroimage; 2016 Sep; 138():43-63. PubMed ID: 27181761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores.
    Bartzokis G; Aravagiri M; Oldendorf WH; Mintz J; Marder SR
    Magn Reson Med; 1993 Apr; 29(4):459-64. PubMed ID: 8464361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer's and Huntingon's disease.
    Bartzokis G; Tishler TA
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):821-33. PubMed ID: 10875443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo assessment of age-related brain iron differences by magnetic field correlation imaging.
    Adisetiyo V; Jensen JH; Ramani A; Tabesh A; Di Martino A; Fieremans E; Castellanos FX; Helpern JA
    J Magn Reson Imaging; 2012 Aug; 36(2):322-31. PubMed ID: 22392846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of R2' measurement methods in the normal brain at 3 Tesla.
    Ni W; Christen T; Zun Z; Zaharchuk G
    Magn Reson Med; 2015 Mar; 73(3):1228-36. PubMed ID: 24753286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vivo study of the orientation-dependent and independent components of transverse relaxation rates in white matter.
    Gil R; Khabipova D; Zwiers M; Hilbert T; Kober T; Marques JP
    NMR Biomed; 2016 Dec; 29(12):1780-1790. PubMed ID: 27809376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.