BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26435485)

  • 1. Quantitative analysis of Cryptosporidium growth in in vitro culture--the impact of parasite density on the success of infection.
    Paziewska-Harris A; Singer M; Schoone G; Schallig H
    Parasitol Res; 2016 Jan; 115(1):329-37. PubMed ID: 26435485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Storage of Cryptosporidium parvum for In Vitro Culture.
    Paziewska-Harris A; Schoone G; Schallig HDFH
    J Parasitol; 2018 Feb; 104(1):96-100. PubMed ID: 29095102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptosporidium parvum DNA replication in cell-free culture.
    Zhang L; Sheoran AS; Widmer G
    J Parasitol; 2009 Oct; 95(5):1239-42. PubMed ID: 19463037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of differences between DNA content of cell-cultured and freely suspended oocysts of Cryptosporidium parvum and their suitability as DNA standards in qPCR.
    Woolsey ID; Blomstrand B; Øines Ø; Enemark HL
    Parasit Vectors; 2019 Dec; 12(1):596. PubMed ID: 31856894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An easy 'one tube' method to estimate viability of Cryptosporidium oocysts using real-time qPCR.
    Paziewska-Harris A; Schoone G; Schallig HD
    Parasitol Res; 2016 Jul; 115(7):2873-7. PubMed ID: 27095569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete development of Cryptosporidium parvum in host cell-free culture.
    Hijjawi NS; Meloni BP; Ng'anzo M; Ryan UM; Olson ME; Cox PT; Monis PT; Thompson RC
    Int J Parasitol; 2004 Jun; 34(7):769-77. PubMed ID: 15157759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis of pig intestinal cell monolayers infected with Cryptosporidium parvum asexual stages.
    Mirhashemi ME; Noubary F; Chapman-Bonofiglio S; Tzipori S; Huggins GS; Widmer G
    Parasit Vectors; 2018 Mar; 11(1):176. PubMed ID: 29530089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations of the relationship between use of in vitro cell culture-quantitative PCR and a mouse-based bioassay for evaluating critical factors affecting the disinfection performance of pulsed UV light for treating Cryptosporidium parvum oocysts in saline.
    Garvey M; Farrell H; Cormican M; Rowan N
    J Microbiol Methods; 2010 Mar; 80(3):267-73. PubMed ID: 20096310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of host protein ENO1 (alpha-enolase) interacting with Cryptosporidium parvum sporozoite surface protein, Cpgp40.
    Wang Y; Li N; Liang G; Wang L; Zhang X; Cui Z; Li X; Zhang S; Zhang L
    Parasit Vectors; 2024 Mar; 17(1):146. PubMed ID: 38504274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycoproteins and Gal-GalNAc cause Cryptosporidium to switch from an invasive sporozoite to a replicative trophozoite.
    Edwinson A; Widmer G; McEvoy J
    Int J Parasitol; 2016 Jan; 46(1):67-74. PubMed ID: 26432292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of replication protein A2 (RPA2) from Cryptosporidium parvum.
    Millership JJ; Cai X; Zhu G
    Microbiology (Reading); 2004 May; 150(Pt 5):1197-1205. PubMed ID: 15133081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum.
    Vinayak S; Pawlowic MC; Sateriale A; Brooks CF; Studstill CJ; Bar-Peled Y; Cipriano MJ; Striepen B
    Nature; 2015 Jul; 523(7561):477-80. PubMed ID: 26176919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum.
    Fei J; Wu H; Su J; Jin C; Li N; Guo Y; Feng Y; Xiao L
    Parasit Vectors; 2018 May; 11(1):312. PubMed ID: 29792229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cryptosporidium parvum transcriptome during in vitro development.
    Mauzy MJ; Enomoto S; Lancto CA; Abrahamsen MS; Rutherford MS
    PLoS One; 2012; 7(3):e31715. PubMed ID: 22438867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the levels of Cryspovirus during in vitro development of Cryptosporidium parvum.
    Jenkins MC; O'Brien CN; Santin M; Fayer R
    Parasitol Res; 2015 Jun; 114(6):2063-8. PubMed ID: 25704645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture.
    Hijjawi NS; Meloni BP; Morgan UM; Thompson RC
    Int J Parasitol; 2001 Aug; 31(10):1048-55. PubMed ID: 11429168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples.
    Yang R; Murphy C; Song Y; Ng-Hublin J; Estcourt A; Hijjawi N; Chalmers R; Hadfield S; Bath A; Gordon C; Ryan U
    Exp Parasitol; 2013 Sep; 135(1):142-7. PubMed ID: 23838581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphic mucin antigens CpMuc4 and CpMuc5 are integral to Cryptosporidium parvum infection in vitro.
    O'Connor RM; Burns PB; Ha-Ngoc T; Scarpato K; Khan W; Kang G; Ward H
    Eukaryot Cell; 2009 Apr; 8(4):461-9. PubMed ID: 19168754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion.
    Yu X; Guo F; Mouneimne RB; Zhu G
    J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Cryptosporidium parvum in environmental soil and vegetables.
    Hong S; Kim K; Yoon S; Park WY; Sim S; Yu JR
    J Korean Med Sci; 2014 Oct; 29(10):1367-71. PubMed ID: 25368489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.