These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26435485)

  • 21. Complete development of Cryptosporidium parvum in rabbit chondrocytes (VELI cells).
    Lacharme L; Villar V; Rojo-Vazquez FA; Suárez S
    Microbes Infect; 2004 May; 6(6):566-71. PubMed ID: 15158190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The development of a real-time quantitative-PCR method for characterisation of a Cryptosporidium parvum in vitro culturing system and assessment of drug efficacy.
    MacDonald LM; Sargent K; Armson A; Thompson RC; Reynoldson JA
    Mol Biochem Parasitol; 2002 May; 121(2):279-82. PubMed ID: 12034463
    [No Abstract]   [Full Text] [Related]  

  • 23. Morphology and in vitro infectivity of sporozoites of Cryptosporidium parvum.
    Petry F; Kneib I; Harris JR
    J Parasitol; 2009 Oct; 95(5):1243-6. PubMed ID: 19492897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological changes and viability of Cryptosporidium parvum sporozoites after excystation in cell-free culture media.
    Matsubayashi M; Ando H; Kimata I; Nakagawa H; Furuya M; Tani H; Sasai K
    Parasitology; 2010 Nov; 137(13):1861-6. PubMed ID: 20800015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MiR-3976 regulates HCT-8 cell apoptosis and parasite burden by targeting BCL2A1 in response to Cryptosporidium parvum infection.
    Li J; Sun L; Xie F; Shao T; Wu S; Li X; Zhang L; Wang R
    Parasit Vectors; 2023 Jul; 16(1):221. PubMed ID: 37415254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted gene knockdown validates the essential role of lactate dehydrogenase in Cryptosporidium parvum.
    Witola WH; Zhang X; Kim CY
    Int J Parasitol; 2017 Nov; 47(13):867-874. PubMed ID: 28606696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a combined in vitro cell culture--quantitative PCR assay for evaluating the disinfection performance of pulsed light for treating the waterborne enteroparasite Giardia lamblia.
    Garvey M; Stocca A; Rowan N
    Exp Parasitol; 2014 Sep; 144():6-13. PubMed ID: 24929148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative evaluation of infectivity change of Cryptosporidium parvum after gamma irradiation.
    Lee SU; Joung M; Nam T; Park WY; Yu JR
    Korean J Parasitol; 2009 Mar; 47(1):7-11. PubMed ID: 19290085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete development and multiplication of Cryptosporidium hominis in cell-free culture.
    Hijjawi N; Estcourt A; Yang R; Monis P; Ryan U
    Vet Parasitol; 2010 Apr; 169(1-2):29-36. PubMed ID: 20092948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-target inhibition of Cryptosporidium parvum by nitazoxanide (NTZ) and paclitaxel (PTX) validated using a novel MDR1-transgenic host cell model and algorithms to quantify the effect on the parasite target.
    Yang B; Yan Y; Wang D; Zhang Y; Yin J; Zhu G
    PLoS Negl Trop Dis; 2023 Mar; 17(3):e0011217. PubMed ID: 36972284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryptosporidium parvum development in the BS-C-1 cell line.
    Deng MQ; Cliver DO
    J Parasitol; 1998 Feb; 84(1):8-15. PubMed ID: 9488330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of CpCaM, a protein potentially involved in the growth of Cryptosporidium parvum.
    Lai P; Yang X; Li YH; Yin YL; Yao Q; Huang S; Fan YY; Song JK; Zhao GH
    Parasitol Res; 2023 Apr; 122(4):989-996. PubMed ID: 36879147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Failure to propagate Cryptosporidium spp. in cell-free culture.
    Girouard D; Gallant J; Akiyoshi DE; Nunnari J; Tzipori S
    J Parasitol; 2006 Apr; 92(2):399-400. PubMed ID: 16729703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative proteomics reveals Cryptosporidium parvum infection disrupts cellular barriers.
    Wang L; Cui Z; Li N; Liang G; Zhang X; Wang Y; Li D; Li X; Zhang S; Zhang L
    J Proteomics; 2023 Sep; 287():104969. PubMed ID: 37463621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of select medium supplements on in vitro development of Cryptosporidium parvum in HCT-8 cells.
    Upton SJ; Tilley M; Brillhart DB
    J Clin Microbiol; 1995 Feb; 33(2):371-5. PubMed ID: 7714194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intron-containing beta-tubulin transcripts in Cryptosporidium parvum cultured in vitro.
    Cai X; Lancto CA; Abrahamsen MS; Zhu G
    Microbiology (Reading); 2004 May; 150(Pt 5):1191-1195. PubMed ID: 15133080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies.
    Yang R; Elankumaran Y; Hijjawi N; Ryan U
    Exp Parasitol; 2015 Jun; 153():55-62. PubMed ID: 25765560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Labeling surface epitopes to identify Cryptosporidium life stages using a scanning electron microscopy-based immunogold approach.
    Edwards H; Thompson RC; Koh WH; Clode PL
    Mol Cell Probes; 2012 Feb; 26(1):21-8. PubMed ID: 22100878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apical Secretory Glycoprotein Complex Contributes to Cell Attachment and Entry by Cryptosporidium parvum.
    Akey ME; Xu R; Ravindran S; Funkhouser-Jones L; Sibley LD
    mBio; 2023 Feb; 14(1):e0306422. PubMed ID: 36722968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential mRNA display cloning and characterization of a Cryptosporidium parvum gene expressed during intracellular development.
    Schroeder AA; Lawrence CE; Abrahamsen MS
    J Parasitol; 1999 Apr; 85(2):213-20. PubMed ID: 10219298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.