These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26435508)

  • 1. The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium-phytate to Nicotiana tabacum.
    Giles CD; Hsu PC; Richardson AE; Hurst MR; Hill JE
    Can J Microbiol; 2015 Dec; 61(12):885-97. PubMed ID: 26435508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The diversity and abundance of phytase genes (β-propeller phytases) in bacterial communities of the maize rhizosphere.
    Cotta SR; Cavalcante Franco Dias A; Seldin L; Andreote FD; van Elsas JD
    Lett Appl Microbiol; 2016 Mar; 62(3):264-8. PubMed ID: 26661994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways.
    Rasul M; Yasmin S; Yahya M; Breitkreuz C; Tarkka M; Reitz T
    Microbiol Res; 2021 May; 246():126703. PubMed ID: 33482437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Phytate-phosphorus uptake and utilization by transgenic tobacco carrying Bacillus subtilis phytase gene].
    Kong F; Lin W; Yan X; Liao H
    Ying Yong Sheng Tai Xue Bao; 2005 Dec; 16(12):2389-93. PubMed ID: 16515194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils.
    Jorquera MA; Crowley DE; Marschner P; Greiner R; Fernández MT; Romero D; Menezes-Blackburn D; De La Luz Mora M
    FEMS Microbiol Ecol; 2011 Jan; 75(1):163-72. PubMed ID: 21073489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of transgenic rhizobacteria overexpressing Citrobacter braakii appA on phytate-P availability to mung bean plants.
    Patel KJ; Vig S; Naresh Kumar G; Archana G
    J Microbiol Biotechnol; 2010 Nov; 20(11):1491-9. PubMed ID: 21124052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose dehydrogenase gene containing phosphobacteria for biofortification of Phosphorus with growth promotion of rice.
    Rasul M; Yasmin S; Suleman M; Zaheer A; Reitz T; Tarkka MT; Islam E; Mirza MS
    Microbiol Res; 2019; 223-225():1-12. PubMed ID: 31178042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and identification of phytate-degrading bacteria and their contribution to phytate mineralization in soil.
    Horii S; Matsuno T; Tagomori J; Mukai M; Adhikari D; Kubo M
    J Gen Appl Microbiol; 2013; 59(5):353-60. PubMed ID: 24201147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and diversity of phytate-mineralizing bacteria.
    Lim BL; Yeung P; Cheng C; Hill JE
    ISME J; 2007 Aug; 1(4):321-30. PubMed ID: 18043643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Phytate Availability in Soils and Phytate-P Acquisition by Plants: A Review.
    Liu X; Han R; Cao Y; Turner BL; Ma LQ
    Environ Sci Technol; 2022 Jul; 56(13):9196-9219. PubMed ID: 35675210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Soluble Phosphate on the Ability of Phytate Mineralization and β-Propeller Phytase Gene Expression of Pseudomonas fluorescens JZ-DZ1, a Phytate-Mineralizing Rhizobacterium.
    Shen L; Wu XQ; Zeng QW; Liu HB
    Curr Microbiol; 2016 Dec; 73(6):915-923. PubMed ID: 27664014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment.
    Gujar PD; Bhavsar KP; Khire JM
    J Sci Food Agric; 2013 Jul; 93(9):2242-7. PubMed ID: 23355258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytate addition to soil induces changes in the abundance and expression of Bacillus β-propeller phytase genes in the rhizosphere.
    Jorquera MA; Saavedra N; Maruyama F; Richardson AE; Crowley DE; del C Catrilaf R; Henriquez EJ; de la Luz Mora M
    FEMS Microbiol Ecol; 2013 Feb; 83(2):352-60. PubMed ID: 22928980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.
    Li GE; Wu XQ; Ye JR; Hou L; Zhou AD; Zhao L
    World J Microbiol Biotechnol; 2013 Nov; 29(11):2181-93. PubMed ID: 23709169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts.
    Fathallh Eida M; Nagaoka T; Wasaki J; Kouno K
    Microbes Environ; 2013; 28(1):71-80. PubMed ID: 23100024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting.
    Li X; Wu Z; Li W; Yan R; Li L; Li J; Li Y; Li M
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):1120-5. PubMed ID: 17149627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation.
    Huang H; Zhang R; Fu D; Luo J; Li Z; Luo H; Shi P; Yang P; Diao Q; Yao B
    Environ Microbiol; 2011 Mar; 13(3):747-57. PubMed ID: 21105982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial phytases in phosphorus acquisition and plant growth promotion.
    Singh B; Satyanarayana T
    Physiol Mol Biol Plants; 2011 Apr; 17(2):93-103. PubMed ID: 23572999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency.
    Buch A; Archana G; Naresh Kumar G
    Res Microbiol; 2008; 159(9-10):635-42. PubMed ID: 18996187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1.
    Suleimanova AD; Beinhauer A; Valeeva LR; Chastukhina IB; Balaban NP; Shakirov EV; Greiner R; Sharipova MR
    Appl Environ Microbiol; 2015 Oct; 81(19):6790-9. PubMed ID: 26209662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.