These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26435508)

  • 21. Extracellular release of a heterologous phytase from roots of transgenic plants: does manipulation of rhizosphere biochemistry impact microbial community structure?
    George TS; Richardson AE; Li SS; Gregory PJ; Daniell TJ
    FEMS Microbiol Ecol; 2009 Dec; 70(3):433-45. PubMed ID: 19744239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability.
    Unno Y; Okubo K; Wasaki J; Shinano T; Osaki M
    Environ Microbiol; 2005 Mar; 7(3):396-404. PubMed ID: 15683400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PCR-RFLP analysis of the diversity of phytate-degrading bacteria in the Tibetan Plateau.
    Miao YZ; Xu H; Fei BJ; Qiao DR; Cao Y
    Can J Microbiol; 2013 Apr; 59(4):245-51. PubMed ID: 23586748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Land-use influences phosphatase gene microdiversity in soils.
    Neal AL; Rossmann M; Brearley C; Akkari E; Guyomar C; Clark IM; Allen E; Hirsch PR
    Environ Microbiol; 2017 Jul; 19(7):2740-2753. PubMed ID: 28447381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency of phosphorus utilization in phyA-expressing cotton lines.
    Liu J; Wang X; Huang H; Wang J; Li Z; Wu L; Zhang G; Ma Z
    Indian J Biochem Biophys; 2012 Aug; 49(4):250-6. PubMed ID: 23077786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil.
    Bergkemper F; Kublik S; Lang F; Krüger J; Vestergaard G; Schloter M; Schulz S
    J Microbiol Methods; 2016 Jun; 125():91-7. PubMed ID: 27102665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant Growth Promotion at Low Temperature by Phosphate-Solubilizing Pseudomonas Spp. Isolated from High-Altitude Himalayan Soil.
    Adhikari P; Jain R; Sharma A; Pandey A
    Microb Ecol; 2021 Oct; 82(3):677-687. PubMed ID: 33512536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of cereal phytase activity for phytate phosphorus utilization by growing pigs fed diets containing triticale or corn.
    Pointillart A; Fourdin A; Fontaine N
    J Nutr; 1987 May; 117(5):907-13. PubMed ID: 3035149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation of European varieties of triticale with special emphasis on the ability of plant phytase to improve phytate phosphorus availability to chickens.
    Jondreville C; Genthon C; Bouguennec A; Carre B; Nys Y
    Br Poult Sci; 2007 Dec; 48(6):678-89. PubMed ID: 18085450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils.
    Frapolli M; Moënne-Loccoz Y; Meyer J; Défago G
    FEMS Microbiol Ecol; 2008 Jun; 64(3):468-81. PubMed ID: 18393988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorous levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention.
    Ravindran V; Cabahug S; Ravindra G; Selle PH; Bryden WL
    Br Poult Sci; 2000 May; 41(2):193-200. PubMed ID: 10890216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial Phosphorus Mobilization Strategies Across a Natural Nutrient Limitation Gradient and Evidence for Linkage With Iron Solubilization Traits.
    Wang S; Walker R; Schicklberger M; Nico PS; Fox PM; Karaoz U; Chakraborty R; Brodie EL
    Front Microbiol; 2021; 12():572212. PubMed ID: 34248859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils.
    George TS; Simpson RJ; Hadobas PA; Richardson AE
    Plant Biotechnol J; 2005 Jan; 3(1):129-40. PubMed ID: 17168905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin.
    Brejnholt SM; Dionisio G; Glitsoe V; Skov LK; Brinch-Pedersen H
    J Sci Food Agric; 2011 Jun; 91(8):1398-405. PubMed ID: 21387323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. β-propeller phytase hydrolyzes insoluble Ca(2+)-phytate salts and completely abrogates the ability of phytate to chelate metal ions.
    Kim OH; Kim YO; Shim JH; Jung YS; Jung WJ; Choi WC; Lee H; Lee SJ; Kim KK; Auh JH; Kim H; Kim JW; Oh TK; Oh BC
    Biochemistry; 2010 Nov; 49(47):10216-27. PubMed ID: 20964370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production.
    Chen X; Xiao Y; Shen W; Govender A; Zhang L; Fan Y; Wang Z
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2449-58. PubMed ID: 26610799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.
    Andlid TA; Veide J; Sandberg AS
    Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beta-propeller phytases in the aquatic environment.
    Cheng C; Lim BL
    Arch Microbiol; 2006 Mar; 185(1):1-13. PubMed ID: 16402222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species.
    Miller SH; Browne P; Prigent-Combaret C; Combes-Meynet E; Morrissey JP; O'Gara F
    Environ Microbiol Rep; 2010 Jun; 2(3):403-11. PubMed ID: 23766113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.