These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26435697)

  • 41. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite.
    Boland DD; Collins RN; Miller CJ; Glover CJ; Waite TD
    Environ Sci Technol; 2014 May; 48(10):5477-85. PubMed ID: 24724707
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water near its Supercritical Point and at Alkaline pH for the Production of Ferric Oxides and Silicates in Anoxic Conditions. A New Hypothesis for the Synthesis of Minerals Observed in Banded Iron Formations and for the Related Geobiotropic Chemistry inside Fluid Inclusions.
    Bassez MP
    Orig Life Evol Biosph; 2018 Sep; 48(3):289-320. PubMed ID: 30091010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates.
    ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R
    Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB.
    Biswakarma J; Kang K; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Chemosphere; 2021 Jan; 263():128188. PubMed ID: 33297154
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low Fe(II) Concentrations Catalyze the Dissolution of Various Fe(III) (hydr)oxide Minerals in the Presence of Diverse Ligands and over a Broad pH Range.
    Kang K; Schenkeveld WDC; Biswakarma J; Borowski SC; Hug SJ; Hering JG; Kraemer SM
    Environ Sci Technol; 2019 Jan; 53(1):98-107. PubMed ID: 30540163
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide.
    Wan M; Shchukarev A; Lohmayer R; Planer-Friedrich B; Peiffer S
    Environ Sci Technol; 2014 May; 48(9):5076-84. PubMed ID: 24735157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced removal of antimony by acid birnessite with doped iron ions: Companied by the structural transformation.
    Lu H; Zhang W; Tao L; Liu F; Zhang J
    Chemosphere; 2019 Jul; 226():834-840. PubMed ID: 30974376
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite).
    Dai R; Liu J; Yu C; Sun R; Lan Y; Mao JD
    Chemosphere; 2009 Jul; 76(4):536-41. PubMed ID: 19342077
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reductive transformations of dichloroacetamide safeners: effects of agrochemical co-formulants and iron oxide + manganese oxide binary-mineral systems.
    Ricko AN; Psoras AW; Sivey JD
    Environ Sci Process Impacts; 2020 Oct; 22(10):2104-2116. PubMed ID: 32959852
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TcO
    Stanberry J; Szlamkowicz I; Purdy LR; Anagnostopoulos V
    Environ Sci Process Impacts; 2021 Jun; 23(6):844-854. PubMed ID: 33885702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Composition and structure of iron oxidation surface layers produced in weak acidic solutions.
    Montes Atenas G; Mielczarski E; Mielczarski JA
    J Colloid Interface Sci; 2005 Sep; 289(1):157-70. PubMed ID: 15922350
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sorption and abiotic transformation of monensin by iron and manganese oxides.
    Hafner SC; Parikh SJ
    Chemosphere; 2020 Aug; 253():126623. PubMed ID: 32302916
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal Adsorption Controls Stability of Layered Manganese Oxides.
    Yang P; Post JE; Wang Q; Xu W; Geiss R; McCurdy PR; Zhu M
    Environ Sci Technol; 2019 Jul; 53(13):7453-7462. PubMed ID: 31150220
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidation of ferrocyanide by birnessite.
    Rennert T; Pohlmeier A; Mansfeldt T
    Environ Sci Technol; 2005 Feb; 39(3):821-5. PubMed ID: 15757345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced Colloidal Stability of CeO2 Nanoparticles by Ferrous Ions: Adsorption, Redox Reaction, and Surface Precipitation.
    Liu X; Ray JR; Neil CW; Li Q; Jun YS
    Environ Sci Technol; 2015 May; 49(9):5476-83. PubMed ID: 25850446
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organic matter interactions with natural manganese oxide and synthetic birnessite.
    Allard S; Gutierrez L; Fontaine C; Croué JP; Gallard H
    Sci Total Environ; 2017 Apr; 583():487-495. PubMed ID: 28126279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Oct; 46(20):11070-7. PubMed ID: 22970760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterogeneous oxidation of Fe(II) on ferric oxide at neutral pH and a low partial pressure of O2.
    Park U; Dempsey BA
    Environ Sci Technol; 2005 Sep; 39(17):6494-500. PubMed ID: 16190204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidation of V(IV) by Birnessite: Kinetics and Surface Complexation.
    Abernathy MJ; Schaefer MV; Vessey CJ; Liu H; Ying SC
    Environ Sci Technol; 2021 Sep; 55(17):11703-11712. PubMed ID: 34488349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.