These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2643604)

  • 1. Export of prepro-alpha-factor from Escherichia coli.
    Lecker S; Meyer D; Wickner W
    J Biol Chem; 1989 Jan; 264(3):1882-6. PubMed ID: 2643604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prepro-alpha-factor has a cleavable signal sequence.
    Waters MG; Evans EA; Blobel G
    J Biol Chem; 1988 May; 263(13):6209-14. PubMed ID: 3283123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the signal sequence of prepro-alpha-factor inhibit both translocation into the endoplasmic reticulum and processing by signal peptidase in yeast cells.
    Allison DS; Young ET
    Mol Cell Biol; 1989 Nov; 9(11):4977-85. PubMed ID: 2513481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pro-region of the yeast prepro-alpha-factor is essential for membrane translocation of human insulin-like growth factor 1 in vivo.
    Chaudhuri B; Steube K; Stephan C
    Eur J Biochem; 1992 Jun; 206(3):793-800. PubMed ID: 1606961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soluble factors stimulating secretory protein translocation in bacteria and yeast can substitute for each other.
    Fecycz IT; Blobel G
    Proc Natl Acad Sci U S A; 1987 Jun; 84(11):3723-7. PubMed ID: 3295868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutant Kex2 enzyme with a C-terminal HDEL sequence releases correctly folded human insulin-like growth factor-1 from a precursor accumulated in the yeast endoplasmic reticulum.
    Chaudhuri B; Latham SE; Stephan C
    Eur J Biochem; 1992 Dec; 210(3):811-22. PubMed ID: 1483466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel Kex2 enzyme can process the proregion of the yeast alpha-factor leader in the endoplasmic reticulum instead of in the Golgi.
    Chaudhuri B; Latham SE; Helliwell SB; Seeboth P
    Biochem Biophys Res Commun; 1992 Feb; 183(1):212-9. PubMed ID: 1543492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunocytochemical analysis of peptide hormone processing: importance of the positively charged N-terminal domain of signal peptide in correct ER targeting in yeast cells.
    Cheong KH; Park SD; Kim J; Hong SH
    Cell Struct Funct; 1997 Jun; 22(3):365-77. PubMed ID: 9249000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-length prepro-alpha-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated.
    Garcia PD; Walter P
    J Cell Biol; 1988 Apr; 106(4):1043-8. PubMed ID: 2834400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane.
    Matlack KE; Misselwitz B; Plath K; Rapoport TA
    Cell; 1999 May; 97(5):553-64. PubMed ID: 10367885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Misplacement of the amino-terminal positive charge in the prepro-alpha-factor signal peptide disrupts membrane translocation in vivo.
    Green R; Kramer RA; Shields D
    J Biol Chem; 1989 Feb; 264(5):2963-8. PubMed ID: 2563373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosyl-phosphatidylinositol anchor attachment in a yeast in vitro system.
    Doering TL; Schekman R
    Biochem J; 1997 Dec; 328 ( Pt 2)(Pt 2):669-75. PubMed ID: 9371730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secretion in yeast: structural features influencing the post-translational translocation of prepro-alpha-factor in vitro.
    Rothblatt JA; Webb JR; Ammerer G; Meyer DI
    EMBO J; 1987 Nov; 6(11):3455-63. PubMed ID: 3322808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient cell-free translation system from Aspergillus nidulans and in vitro translocation of prepro-alpha-factor across Aspergillus microsomes.
    Devchand M; Gwynne D; Buxton FP; Davies RW
    Curr Genet; 1988 Dec; 14(6):561-6. PubMed ID: 3072100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular location of enzymes involved in the N-glycosylation and processing of asparagine-linked oligosaccharides in Saccharomyces cerevisiae.
    Tillmann U; Günther R; Schweden J; Bause E
    Eur J Biochem; 1987 Feb; 162(3):635-42. PubMed ID: 3549291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretion in yeast. Purification and in vitro translocation of chemical amounts of prepro-alpha-factor.
    Bush GL; Tassin AM; Fridén H; Meyer DI
    J Biol Chem; 1991 Jul; 266(21):13811-4. PubMed ID: 1856213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of protein translocation in permeabilized cells of Schizosaccharomyces pombe by puromycin.
    Kambe-Honjoh H; Yoda K; Yamasaki M
    Biosci Biotechnol Biochem; 1992 Oct; 56(10):1649-54. PubMed ID: 1369064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor.
    Hansen W; Garcia PD; Walter P
    Cell; 1986 May; 45(3):397-406. PubMed ID: 3009026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal recognition particle (SRP) stabilizes the translocation-competent conformation of pre-secretory proteins.
    Sanz P; Meyer DI
    EMBO J; 1988 Nov; 7(11):3553-7. PubMed ID: 2850167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topogenic effect of positively charged N-terminal amino acid in ER translocation of yeast alpha-factor precursor.
    Lee MA; Cheong KH; Choe J; Park SD; Shields D; Hong SH
    Cell Struct Funct; 1996 Jun; 21(3):175-81. PubMed ID: 8853554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.