These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26436249)

  • 1. Survival Model for Foot and Leg High Rate Axial Impact Injury Data.
    Bailey AM; McMurry TL; Poplin GS; Salzar RS; Crandall JR
    Traffic Inj Prev; 2015; 16 Suppl 2():S96-S102. PubMed ID: 26436249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foot-ankle complex injury risk curves using calcaneus bone mineral density data.
    Yoganandan N; Chirvi S; Voo L; DeVogel N; Pintar FA; Banerjee A
    J Mech Behav Biomed Mater; 2017 Aug; 72():246-251. PubMed ID: 28505593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Leg Injury Reference Values and Risk Curves from Survival Analysis for Male and Female Dummies: Meta-analysis of Postmortem Human Subject Tests.
    Yoganandan N; Arun MW; Pintar FA; Banerjee A
    Traffic Inj Prev; 2015; 16 Suppl 1():S100-7. PubMed ID: 26027961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized lower leg injury probability curves from postmortem human subject tests under axial impacts.
    Yoganandan N; Arun MW; Pintar FA; Szabo A
    Traffic Inj Prev; 2014; 15 Suppl 1(0 1):S151-6. PubMed ID: 25307381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Severe Calcaneus Injury Probability Curves Due to Under-Body Blast.
    Voo L; Ott K; Metzger T; Merkle A; Drewry D
    Ann Biomed Eng; 2021 Nov; 49(11):3118-3127. PubMed ID: 34117584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Injury Risk Function for the Leg, Foot, and Ankle Exposed to Axial Impact Loading Using Force and Impulse.
    Bailey AM; McMurry TL; Salzar RS; Crandall JR
    J Biomech Eng; 2019 Feb; 141(2):. PubMed ID: 30453328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of posture on forces and moments measured in a Hybrid III ATD lower leg.
    Van Tuyl J; Burkhart TA; Quenneville CE
    Traffic Inj Prev; 2016 May; 17(4):381-5. PubMed ID: 26376156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension.
    Funk JR; Crandall JR; Tourret LJ; MacMahon CB; Bass CR; Patrie JT; Khaewpong N; Eppinger RH
    J Biomech Eng; 2002 Dec; 124(6):750-7. PubMed ID: 12596644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeatability testing of a new Hybrid III 6-year-old ATD lower extremity.
    Boucher LC; Ryu Y; Kang YS; Bolte JH
    Traffic Inj Prev; 2017 May; 18(sup1):S103-S108. PubMed ID: 28548921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effectiveness of toe board energy-absorbing material for foot, ankle, and lower leg injury reduction.
    Patalak JP; Stitzel JD
    Traffic Inj Prev; 2018 Feb; 19(2):195-200. PubMed ID: 28696780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical and injury response of human foot and ankle under complex loading.
    Shin J; Untaroiu CD
    J Biomech Eng; 2013 Oct; 135(10):101008. PubMed ID: 23897434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower Extremity Impact and Injury Responses of Male and Female PMHS to High-Rate Vertical Loading.
    Cristino D; Pietsch H; Kemper A; Bolte J; Danelson K; Hardy W
    Ann Biomed Eng; 2021 Nov; 49(11):2990-3017. PubMed ID: 34312778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Axial Impact Response and Plantar Load Distribution of the Hybrid III and Military Lower Extremity Under Altered Ankle Postures.
    de Lange JE; Quenneville CE
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34259862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hybrid III upper and lower neck response in compressive loading scenarios with known human injury outcomes.
    Toomey DE; Yang KH; Van Ee CA
    Traffic Inj Prev; 2014; 15 Suppl 1():S223-30. PubMed ID: 25307391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the biofidelity of the HIII and MIL-Lx lower leg surrogates under axial impact loading.
    Quenneville CE; Dunning CE
    Traffic Inj Prev; 2012; 13(1):81-5. PubMed ID: 22239148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions.
    Chirvi S; Pintar F; Yoganandan N; Banerjee A; Schlick M; Curry W; Voo L
    Stapp Car Crash J; 2017 Nov; 61():157-173. PubMed ID: 29394438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical Loading.
    Pintar FA; Schlick MB; Yoganandan N; Voo L; Merkle AC; Kleinberger M
    Stapp Car Crash J; 2016 Nov; 60():247-285. PubMed ID: 27871100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Foot-Ankle-Leg Injuries in Various Under-Foot Impact Loading Environments With a Human Active Lower Limb Model.
    Huang J; Huang C; Mo F
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34382656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of impact duration on the axial fracture tolerance of the isolated tibia during automotive and military impacts.
    Martinez AA; Chakravarty AB; Quenneville CE
    J Mech Behav Biomed Mater; 2018 Feb; 78():315-320. PubMed ID: 29197302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events.
    McKay BJ; Bir CA
    Stapp Car Crash J; 2009 Nov; 53():229-49. PubMed ID: 20058557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.