These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 26436274)

  • 1. Evaluation of AGRO-2014 for Predicting Hydrophobic Organic Chemical Concentrations in Ponds.
    Padilla LE; Winchell MF; Jackson SH
    J Environ Qual; 2015 Sep; 44(5):1568-78. PubMed ID: 26436274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AGRO-2014: A time dependent model for assessing the fate and food-web bioaccumulation of organic pesticides in farm ponds: Model testing and performance analysis.
    Gobas FAPC; Lai HF; Mackay D; Padilla LE; Goetz A; Jackson SH
    Sci Total Environ; 2018 Oct; 639():1324-1333. PubMed ID: 29929298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water.
    Maruya KA; Zeng EY; Tsukada D; Bay SM
    Environ Toxicol Chem; 2009 Apr; 28(4):733-40. PubMed ID: 19391690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Part IV-sorption of hydrophobic organic contaminants.
    Pan B; Ning P; Xing B
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):554-64. PubMed ID: 18923860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dissolved organic carbon on sorption of pyrethroids to sediments.
    Delgado-Moreno L; Wu L; Gan J
    Environ Sci Technol; 2010 Nov; 44(22):8473-8. PubMed ID: 20945891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of the equilibrium partitioning approach for volatile organic compounds in sediment.
    Fuchsman PC
    Environ Toxicol Chem; 2003 Jul; 22(7):1532-4. PubMed ID: 12836978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Part V--Sorption of pharmaceuticals and personal care products.
    Pan B; Ning P; Xing B
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):106-16. PubMed ID: 18931866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting organic contaminant concentrations in sediment porewater using solid-phase microextraction.
    Yang ZY; Zeng EY; Maruya KA; Mai BX; Ran Y
    Chemosphere; 2007 Jan; 66(8):1408-14. PubMed ID: 17092541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments.
    Oen AM; Beckingham B; Ghosh U; Kruså ME; Luthy RG; Hartnik T; Henriksen T; Cornelissen G
    Environ Sci Technol; 2012 Jan; 46(2):810-7. PubMed ID: 22128748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the fate and effects of tributyltin in marine systems.
    Meador JP
    Rev Environ Contam Toxicol; 2000; 166():1-48. PubMed ID: 10868075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium sampling informs tissue residue and sediment remediation for pyrethroid insecticides in mariculture: A laboratory demonstration.
    Li JY; Shi W; Li Z; Chen Y; Shao L; Jin L
    Sci Total Environ; 2018 Mar; 616-617():639-646. PubMed ID: 29103654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model.
    Chen WB; Liu WC
    Mar Pollut Bull; 2017 Mar; 116(1-2):365-384. PubMed ID: 28117132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.
    Bartley R; Speirs WJ; Ellis TW; Waters DK
    Mar Pollut Bull; 2012; 65(4-9):101-16. PubMed ID: 21889170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of environmental and biomass dynamics in predicting chemical exposure in ecological risk assessment.
    Morselli M; Semplice M; De Laender F; Van den Brink PJ; Di Guardo A
    Sci Total Environ; 2015 Sep; 526():338-45. PubMed ID: 25967479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for predicting sediment-water partition of toxic chemicals in aquatic environments.
    Shimazu H; Ohnishi E; Ozaki N; Fukushima T; Nakasugi O
    Water Sci Technol; 2002; 46(11-12):437-42. PubMed ID: 12523791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A probabilistic screening model for evaluating pyrethroid surface water monitoring data.
    Spurlock F; Bacey J; Starner K; Gill S
    Environ Monit Assess; 2005 Oct; 109(1-3):161-79. PubMed ID: 16240196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.