These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26436425)

  • 1. Effect of Stone-Wales defects on the thermal conductivity of graphene.
    Krasavin SE; Osipov VA
    J Phys Condens Matter; 2015 Oct; 27(42):425302. PubMed ID: 26436425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene.
    Lee BS
    J Phys Condens Matter; 2018 Jul; 30(29):295302. PubMed ID: 29873305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2017 Aug; 23(8):247. PubMed ID: 28766111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering.
    Barati M; Vazifehshenas T; Salavati-Fard T; Farmanbar M
    J Phys Condens Matter; 2018 Apr; 30(15):155307. PubMed ID: 29504943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons.
    Xie G; Shen Y
    Phys Chem Chem Phys; 2015 Apr; 17(14):8822-7. PubMed ID: 25743638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimensional crossover of thermal conductance in graphene nanoribbons: a first-principles approach.
    Wang J; Wang XM; Chen YF; Wang JS
    J Phys Condens Matter; 2012 Jul; 24(29):295403. PubMed ID: 22739359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ; Liu Z; Ng TY
    Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity of defective graphene: an efficient molecular dynamics study based on graphics processing units.
    Wu X; Han Q
    Nanotechnology; 2020 May; 31(21):215708. PubMed ID: 32032004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons.
    Chen J; Meng L
    ACS Omega; 2022 Jun; 7(23):20186-20194. PubMed ID: 35722022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phononic Fano resonances in graphene nanoribbons with local defects.
    Savin AV; Kivshar YS
    Sci Rep; 2017 Jul; 7(1):4668. PubMed ID: 28680080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High temperature dependence of thermal transport in graphene foam.
    Li M; Sun Y; Xiao H; Hu X; Yue Y
    Nanotechnology; 2015 Mar; 26(10):105703. PubMed ID: 25683178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
    Haskins JB; Kınacı A; Sevik C; Çağın T
    J Chem Phys; 2014 Jun; 140(24):244112. PubMed ID: 24985623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM; Pereira LFC
    Sci Rep; 2018 Feb; 8(1):2737. PubMed ID: 29426893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal expansion and impurity effects on lattice thermal conductivity of solid argon.
    Chen Y; Lukes JR; Li D; Yang J; Wu Y
    J Chem Phys; 2004 Feb; 120(8):3841-6. PubMed ID: 15268549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of twisted bilayer graphene.
    Li H; Ying H; Chen X; Nika DL; Cocemasov AI; Cai W; Balandin AA; Chen S
    Nanoscale; 2014 Nov; 6(22):13402-8. PubMed ID: 25273673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.