BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26436445)

  • 1. Wheat leaf lipids during heat stress: II. Lipids experiencing coordinated metabolism are detected by analysis of lipid co-occurrence.
    Narayanan S; Prasad PV; Welti R
    Plant Cell Environ; 2016 Mar; 39(3):608-17. PubMed ID: 26436445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations.
    Narayanan S; Tamura PJ; Roth MR; Prasad PV; Welti R
    Plant Cell Environ; 2016 Apr; 39(4):787-803. PubMed ID: 26436679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in wheat pollen lipidome during high day and night temperature stress.
    Narayanan S; Prasad PVV; Welti R
    Plant Cell Environ; 2018 Aug; 41(8):1749-1761. PubMed ID: 29377219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis.
    Vu HS; Shiva S; Roth MR; Tamura P; Zheng L; Li M; Sarowar S; Honey S; McEllhiney D; Hinkes P; Seib L; Williams TD; Gadbury G; Wang X; Shah J; Welti R
    Plant J; 2014 Nov; 80(4):728-43. PubMed ID: 25200898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of drought on the content of polar lipids and sterols in wheat leaves].
    Okanenko OA; Taran NIu; Symchuk OIe; Chykalenko VH; Musiienko MM
    Ukr Biokhim Zh (1978); 1994; 66(1):94-7. PubMed ID: 7974846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles.
    Djanaguiraman M; Boyle DL; Welti R; Jagadish SVK; Prasad PVV
    BMC Plant Biol; 2018 Apr; 18(1):55. PubMed ID: 29621997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the leaf lipidome of Brassica carinata under high-temperature stress.
    Zoong Lwe Z; Sah S; Persaud L; Li J; Gao W; Raja Reddy K; Narayanan S
    BMC Plant Biol; 2021 Sep; 21(1):404. PubMed ID: 34488625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipidomics-based insights into the physiological mechanism of wheat in response to heat stress.
    Hu H; Jia Y; Hao Z; Ma G; Xie Y; Wang C; Ma D
    Plant Physiol Biochem; 2023 Dec; 205():108190. PubMed ID: 37988880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling.
    Shirdelmoghanloo H; Taylor JD; Lohraseb I; Rabie H; Brien C; Timmins A; Martin P; Mather DE; Emebiri L; Collins NC
    BMC Plant Biol; 2016 Apr; 16():100. PubMed ID: 27101979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Transient Heat Stress on Polar Lipid Metabolism in Seedlings of Wheat Near-Isogenic Lines Contrasting in Resistance to Hessian Fly (Cecidomyiidae) Infestation.
    Currie Y; Chen MS; Nickolov R; Bai G; Zhu L
    J Econ Entomol; 2014 Dec; 107(6):2196-203. PubMed ID: 26470086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress.
    Valitova J; Renkova A; Mukhitova F; Dmitrieva S; Beckett RP; Minibayeva FV
    Plant Physiol Biochem; 2019 Sep; 142():452-459. PubMed ID: 31421442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat.
    Impa SM; Vennapusa AR; Bheemanahalli R; Sabela D; Boyle D; Walia H; Jagadish SVK
    Plant Cell Environ; 2020 Feb; 43(2):431-447. PubMed ID: 31702834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat Sensing and Lipid Reprograming as a Signaling Switch for Heat Stress Responses in Wheat.
    Abdelrahman M; Ishii T; El-Sayed M; Tran LP
    Plant Cell Physiol; 2020 Aug; 61(8):1399-1407. PubMed ID: 32467978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Pre-Anthesis Drought, Heat and Their Combination on the Growth, Yield and Physiology of diverse Wheat (Triticum aestivum L.) Genotypes Varying in Sensitivity to Heat and drought stress.
    Qaseem MF; Qureshi R; Shaheen H
    Sci Rep; 2019 May; 9(1):6955. PubMed ID: 31061444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid profiles in wheat cultivars resistant and susceptible to tan spot and the effect of disease on the profiles.
    Kim D; Jeannotte R; Welti R; Bockus WW
    Phytopathology; 2013 Jan; 103(1):74-80. PubMed ID: 23035632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sterol glycosides and cerebrosides accumulate in Pichia pastoris, Rhynchosporium secalis and other fungi under normal conditions or under heat shock and ethanol stress.
    Sakaki T; Zähringer U; Warnecke DC; Fahl A; Knogge W; Heinz E
    Yeast; 2001 Jun; 18(8):679-95. PubMed ID: 11378896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.
    Fu J; Momcilović I; Clemente TE; Nersesian N; Trick HN; Ristic Z
    Plant Mol Biol; 2008 Oct; 68(3):277-88. PubMed ID: 18622733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheat (Triticum aestivum L.) lipid species distribution in the different stages of straight dough bread making.
    Janssen F; Wouters AGB; Pareyt B; Gerits LR; Delcour JA; Waelkens E; Derua R
    Food Res Int; 2018 Oct; 112():299-311. PubMed ID: 30131141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress.
    Zhang Y; Ma XM; Wang XC; Liu JH; Huang BY; Guo XY; Xiong SP; La GX
    Plant Physiol Biochem; 2017 Feb; 111():30-38. PubMed ID: 27894005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway.
    Hu XJ; Chen D; Lynne Mclntyre C; Fernanda Dreccer M; Zhang ZB; Drenth J; Kalaipandian S; Chang H; Xue GP
    Plant Cell Environ; 2018 Jan; 41(1):79-98. PubMed ID: 28370204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.