These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 26436482)

  • 1. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy.
    Scarcelli G; Polacheck WJ; Nia HT; Patel K; Grodzinsky AJ; Kamm RD; Yun SH
    Nat Methods; 2015 Dec; 12(12):1132-4. PubMed ID: 26436482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive Imaging: Brillouin Confocal Microscopy.
    Nikolić M; Conrad C; Zhang J; Scarcelli G
    Adv Exp Med Biol; 2018; 1092():351-364. PubMed ID: 30368760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics of subcellular structures by non-invasive Brillouin microscopy.
    Antonacci G; Braakman S
    Sci Rep; 2016 Nov; 6():37217. PubMed ID: 27845411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brillouin optical microscopy for corneal biomechanics.
    Scarcelli G; Pineda R; Yun SH
    Invest Ophthalmol Vis Sci; 2012 Jan; 53(1):185-90. PubMed ID: 22159012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes.
    Zhang J; Scarcelli G
    Nat Protoc; 2021 Feb; 16(2):1251-1275. PubMed ID: 33452504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo Brillouin optical microscopy of the human eye.
    Scarcelli G; Yun SH
    Opt Express; 2012 Apr; 20(8):9197-202. PubMed ID: 22513631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy.
    Remer I; Shaashoua R; Shemesh N; Ben-Zvi A; Bilenca A
    Nat Methods; 2020 Sep; 17(9):913-916. PubMed ID: 32747769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.
    Guilbert M; Roig B; Terryn C; Garnotel R; Jeannesson P; Sockalingum GD; Manfait M; Perraut F; Dinten JM; Koenig A; Piot O
    Oncotarget; 2016 Feb; 7(8):8546-55. PubMed ID: 26885896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional optical imaging of three-dimensional engineered tissue development.
    Tan W; Sendemir-Urkmez A; Fahrner LJ; Jamison R; Leckband D; Boppart SA
    Tissue Eng; 2004; 10(11-12):1747-56. PubMed ID: 15684683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying cell-induced matrix deformation in three dimensions based on imaging matrix fibers.
    Notbohm J; Lesman A; Tirrell DA; Ravichandran G
    Integr Biol (Camb); 2015 Oct; 7(10):1186-95. PubMed ID: 26021600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.
    Rianna C; Ventre M; Cavalli S; Radmacher M; Netti PA
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21503-10. PubMed ID: 26372777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy.
    Meng Z; Bustamante Lopez SC; Meissner KE; Yakovlev VV
    J Biophotonics; 2016 Mar; 9(3):201-7. PubMed ID: 26929086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging.
    Zhang J; Fiore A; Yun SH; Kim H; Scarcelli G
    Sci Rep; 2016 Oct; 6():35398. PubMed ID: 27739499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography.
    Zhang J; Raghunathan R; Rippy J; Wu C; Finnell RH; Larin KV; Scarcelli G
    Birth Defects Res; 2019 Aug; 111(14):991-998. PubMed ID: 30239173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Frequency Mechanical Properties of Tumors Measured by Brillouin Light Scattering.
    Margueritat J; Virgone-Carlotta A; Monnier S; Delanoë-Ayari H; Mertani HC; Berthelot A; Martinet Q; Dagany X; Rivière C; Rieu JP; Dehoux T
    Phys Rev Lett; 2019 Jan; 122(1):018101. PubMed ID: 31012711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Reflectance Traction Microscopy.
    Kim J; Jones CA; Groves NS; Sun B
    PLoS One; 2016; 11(6):e0156797. PubMed ID: 27304456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser interference microscopy of amphibian erythrocytes: impact of cell volume and refractive index.
    Yusipovich AI; Zagubizhenko MV; Levin GG; Platonova A; Parshina EY; Grygorzcyk R; Maksimov GV; Rubin AB; Orlov SN
    J Microsc; 2011 Dec; 244(3):223-9. PubMed ID: 21999139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy.
    Tello M; Spenlé C; Hemmerlé J; Mercier L; Fabre R; Allio G; Simon-Assmann P; Goetz JG
    Methods; 2016 Feb; 94():85-100. PubMed ID: 26439175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical imaging of cell stiffness and prestress with subcellular resolution.
    Canović EP; Seidl DT; Polio SR; Oberai AA; Barbone PE; Stamenović D; Smith ML
    Biomech Model Mechanobiol; 2014 Jun; 13(3):665-78. PubMed ID: 24022327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the development of a confocal Rayleigh-Brillouin microscope.
    Liptak DC; Reber JC; Maguire JF; Amer MS
    Rev Sci Instrum; 2007 Jan; 78(1):016106. PubMed ID: 17503955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.