BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26436826)

  • 1. Polymerase δ replicates both strands after homologous recombination-dependent fork restart.
    Miyabe I; Mizuno K; Keszthelyi A; Daigaku Y; Skouteri M; Mohebi S; Kunkel TA; Murray JM; Carr AM
    Nat Struct Mol Biol; 2015 Nov; 22(11):932-8. PubMed ID: 26436826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication dynamics of recombination-dependent replication forks.
    Naiman K; Campillo-Funollet E; Watson AT; Budden A; Miyabe I; Carr AM
    Nat Commun; 2021 Feb; 12(1):923. PubMed ID: 33568651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of arrested replication forks by homologous recombination is error-prone.
    Iraqui I; Chekkal Y; Jmari N; Pietrobon V; Fréon K; Costes A; Lambert SA
    PLoS Genet; 2012; 8(10):e1002976. PubMed ID: 23093942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication.
    Morrow CA; Nguyen MO; Fower A; Wong IN; Osman F; Bryer C; Whitby MC
    Elife; 2017 Jun; 6():. PubMed ID: 28586299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting template switch recombination associated with restarted DNA replication.
    Jalan M; Oehler J; Morrow CA; Osman F; Whitby MC
    Elife; 2019 Jan; 8():. PubMed ID: 30667359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombination occurs within minutes of replication blockage by RTS1 producing restarted forks that are prone to collapse.
    Nguyen MO; Jalan M; Morrow CA; Osman F; Whitby MC
    Elife; 2015 Mar; 4():e04539. PubMed ID: 25806683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks.
    Teixeira-Silva A; Ait Saada A; Hardy J; Iraqui I; Nocente MC; Fréon K; Lambert SAE
    Nat Commun; 2017 Dec; 8(1):1982. PubMed ID: 29215009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The extent of error-prone replication restart by homologous recombination is controlled by Exo1 and checkpoint proteins.
    Tsang E; Miyabe I; Iraqui I; Zheng J; Lambert SA; Carr AM
    J Cell Sci; 2014 Jul; 127(Pt 13):2983-94. PubMed ID: 24806966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypes of
    Flåtten I; Helgesen E; Pedersen IB; Waldminghaus T; Rothe C; Taipale R; Johnsen L; Skarstad K
    J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28947673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombination-restarted replication makes inverted chromosome fusions at inverted repeats.
    Mizuno K; Miyabe I; Schalbetter SA; Carr AM; Murray JM
    Nature; 2013 Jan; 493(7431):246-9. PubMed ID: 23178809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PCNA unloader Elg1 promotes recombination at collapsed replication forks in fission yeast.
    Tamang S; Kishkevich A; Morrow CA; Osman F; Jalan M; Whitby MC
    Elife; 2019 May; 8():. PubMed ID: 31149897
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Budden AM; Eravci M; Watson AT; Campillo-Funollet E; Oliver AW; Naiman K; Carr AM
    Elife; 2023 Aug; 12():. PubMed ID: 37615341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange.
    Lambert S; Mizuno K; Blaisonneau J; Martineau S; Chanet R; Fréon K; Murray JM; Carr AM; Baldacci G
    Mol Cell; 2010 Aug; 39(3):346-59. PubMed ID: 20705238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restarted replication forks are error-prone and cause CAG repeat expansions and contractions.
    Gold MA; Whalen JM; Freon K; Hong Z; Iraqui I; Lambert SAE; Freudenreich CH
    PLoS Genet; 2021 Oct; 17(10):e1009863. PubMed ID: 34673780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smc5/6 maintains stalled replication forks in a recombination-competent conformation.
    Irmisch A; Ampatzidou E; Mizuno K; O'Connell MJ; Murray JM
    EMBO J; 2009 Jan; 28(2):144-55. PubMed ID: 19158664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21406-12. PubMed ID: 8702922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size.
    Wu CA; Zechner EL; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4030-44. PubMed ID: 1740451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RecQ DNA helicase Rqh1 constrains Exonuclease 1-dependent recombination at stalled replication forks.
    Osman F; Ahn JS; Lorenz A; Whitby MC
    Sci Rep; 2016 Mar; 6():22837. PubMed ID: 26957021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing.
    Hu J; Sun L; Shen F; Chen Y; Hua Y; Liu Y; Zhang M; Hu Y; Wang Q; Xu W; Sun F; Ji J; Murray JM; Carr AM; Kong D
    Cell; 2012 Jun; 149(6):1221-32. PubMed ID: 22682245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swi1 and Swi3 are components of a replication fork protection complex in fission yeast.
    Noguchi E; Noguchi C; McDonald WH; Yates JR; Russell P
    Mol Cell Biol; 2004 Oct; 24(19):8342-55. PubMed ID: 15367656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.