BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26436877)

  • 1. Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer.
    Dennis SG; Trusk T; Richards D; Jia J; Tan Y; Mei Y; Fann S; Markwald R; Yost M
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26436877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting endothelial cells with alginate for 3D tissue constructs.
    Khalil S; Sun W
    J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
    Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK
    Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink.
    Wu Y; Wenger A; Golzar H; Tang XS
    Sci Rep; 2020 Nov; 10(1):20648. PubMed ID: 33244046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.
    Lee JM; Yeong WY
    Adv Healthc Mater; 2016 Nov; 5(22):2856-2865. PubMed ID: 27767258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of Bioprinting with a Modified Desktop 3D Printer.
    Goldstein TA; Epstein CJ; Schwartz J; Krush A; Lagalante DJ; Mercadante KP; Zeltsman D; Smith LP; Grande DA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1071-1076. PubMed ID: 27819188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting.
    Engberg A; Stelzl C; Eriksson O; O'Callaghan P; Kreuger J
    Sci Rep; 2021 Nov; 11(1):21547. PubMed ID: 34732783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting and Biofabrication with Peptide and Protein Biomaterials.
    Boyd-Moss M; Fox K; Brandt M; Nisbet D; Williams R
    Adv Exp Med Biol; 2017; 1030():95-129. PubMed ID: 29081051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications.
    Zhuang P; Ng WL; An J; Chua CK; Tan LP
    PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional printed silk-based biomimetic tri-layered meniscus for potential patient-specific implantation.
    Bandyopadhyay A; Mandal BB
    Biofabrication; 2019 Oct; 12(1):015003. PubMed ID: 31480031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities.
    Wu CA; Zhu Y; Venkatesh A; Stark CJ; Lee SH; Woo YJ
    Tissue Eng Part C Methods; 2023 Mar; 29(3):85-94. PubMed ID: 36719778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable and Compartmentalized Multimaterial Bioprinting for Complex Living Tissue Constructs.
    Hassan S; Gomez-Reyes E; Enciso-Martinez E; Shi K; Campos JG; Soria OYP; Luna-Cerón E; Lee MC; Garcia-Reyes I; Steakelum J; Jeelani H; García-Rivera LE; Cho M; Cortes SS; Kamperman T; Wang H; Leijten J; Fiondella L; Shin SR
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):51602-51618. PubMed ID: 36346873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Coaxial Bioprinting of Vasculature.
    Wu Y; Zhang Y; Yu Y; Ozbolat IT
    Methods Mol Biol; 2020; 2140():171-181. PubMed ID: 32207112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Bioprinting: from Benches to Translational Applications.
    Heinrich MA; Liu W; Jimenez A; Yang J; Akpek A; Liu X; Pi Q; Mu X; Hu N; Schiffelers RM; Prakash J; Xie J; Zhang YS
    Small; 2019 Jun; 15(23):e1805510. PubMed ID: 31033203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.