These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26437091)

  • 1. Sensitivity Analysis of the Agricultural Policy/Environmental eXtender (APEX) for Phosphorus Loads in Tile-Drained Landscapes.
    Ford W; King K; Williams M; Williams J; Fausey N
    J Environ Qual; 2015 Jul; 44(4):1099-110. PubMed ID: 26437091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of preferential flow and agroecosystem management on subsurface particulate phosphorus loadings in tile-drained landscapes.
    Nazari S; Ford WI; King KW
    J Environ Qual; 2020 Sep; 49(5):1370-1383. PubMed ID: 33016447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cover crops differentially influenced nitrogen and phosphorus loss in tile drainage and surface runoff from agricultural fields in Ohio, USA.
    Hanrahan BR; King KW; Duncan EW; Shedekar VS
    J Environ Manage; 2021 Sep; 293():112910. PubMed ID: 34098350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreasing Phosphorus Loss in Tile-Drained Landscapes Using Flue Gas Desulfurization Gypsum.
    King KW; Williams MR; Dick WA; LaBarge GA
    J Environ Qual; 2016 Sep; 45(5):1722-1730. PubMed ID: 27695765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified APEX model for Simulating Macropore Phosphorus Contributions to Tile Drains.
    Ford WI; King KW; Williams MR; Confesor RB
    J Environ Qual; 2017 Nov; 46(6):1413-1423. PubMed ID: 29293822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed depressions and soil phosphorus influence subsurface phosphorus losses in a tile-drained field in Illinois.
    Andino LF; Gentry LE; Fraterrigo JM
    J Environ Qual; 2020 Sep; 49(5):1273-1285. PubMed ID: 33016436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crop growth, hydrology, and water quality dynamics in agricultural fields across the Western Lake Erie Basin: Multi-site verification of the Nutrient Tracking Tool (NTT).
    Guo T; Confesor R; Saleh A; King K
    Sci Total Environ; 2020 Jul; 726():138485. PubMed ID: 32315850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Mitigating Phosphorus Losses from a Tile-Drained and Manured Field Using RZWQM2-P.
    Sadhukhan D; Qi Z; Zhang TQ; Tan CS; Ma L
    J Environ Qual; 2019 Jul; 48(4):995-1005. PubMed ID: 31589663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Legacy phosphorus concentration-discharge relationships in surface runoff and tile drainage from Ohio crop fields.
    Osterholz WR; Hanrahan BR; King KW
    J Environ Qual; 2020 May; 49(3):675-687. PubMed ID: 33016383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controls on subsurface nitrate and dissolved reactive phosphorus losses from agricultural fields during precipitation-driven events.
    Hanrahan BR; King KW; Williams MR
    Sci Total Environ; 2021 Feb; 754():142047. PubMed ID: 33254852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of reactive phosphorus treatment by filter materials at the edge of tile-drained agricultural catchments: A global view of the current status and challenges.
    Mendes LRD; Pugliese L; Canga E; Wu S; Heckrath GJ
    J Environ Manage; 2022 Dec; 324():116329. PubMed ID: 36183527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hydrodynamically rough grassed waterways on dissolved reactive phosphorus loads coming from agricultural watersheds.
    Fiener P; Auerswald K
    J Environ Qual; 2009; 38(2):548-59. PubMed ID: 19202025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Hydrologic Response in Tile-Drained Landscapes: Implications for Phosphorus Transport.
    Macrae ML; Ali GA; King KW; Plach JM; Pluer WT; Williams M; Morison MQ; Tang W
    J Environ Qual; 2019 Sep; 48(5):1347-1355. PubMed ID: 31589707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact factors and mechanisms of dissolved reactive phosphorus (DRP) losses from agricultural fields: A review and synthesis study in the Lake Erie basin.
    Ni X; Yuan Y; Liu W
    Sci Total Environ; 2020 Apr; 714():136624. PubMed ID: 32018948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus transport in agricultural subsurface drainage: a review.
    King KW; Williams MR; Macrae ML; Fausey NR; Frankenberger J; Smith DR; Kleinman PJ; Brown LC
    J Environ Qual; 2015 Mar; 44(2):467-85. PubMed ID: 26023966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.
    Smith DR; King KW; Johnson L; Francesconi W; Richards P; Baker D; Sharpley AN
    J Environ Qual; 2015 Mar; 44(2):495-502. PubMed ID: 26023968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil phosphorus loss in tile drainage water from long-term conventional- and non-tillage soils of Ontario with and without compost addition.
    Zhang TQ; Tan CS; Wang YT; Ma BL; Welacky T
    Sci Total Environ; 2017 Feb; 580():9-16. PubMed ID: 27939997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources and subsurface transport of dissolved reactive phosphorus in a semiarid, no-till catchment with complex topography.
    Ortega-Pieck A; Norby J; Brooks ES; Strawn D; Crump AR; Huggins DR
    J Environ Qual; 2020 Sep; 49(5):1286-1297. PubMed ID: 33016460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of systematic tile drainage to watershed-scale phosphorus transport.
    King KW; Williams MR; Fausey NR
    J Environ Qual; 2015 Mar; 44(2):486-94. PubMed ID: 26023967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.