BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26437350)

  • 1. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.
    Gauslaa Y; Yemets OA; Asplund J; Solhaug KA
    Sci Total Environ; 2016 Jan; 541():795-801. PubMed ID: 26437350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal and spatial variation in carbon based secondary compounds in green algal and cyanobacterial members of the epiphytic lichen genus Lobaria.
    Gauslaa Y; Bidussi M; Solhaug KA; Asplund J; Larsson P
    Phytochemistry; 2013 Oct; 94():91-8. PubMed ID: 23664176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada.
    Carreras HA; Wannaz ED; Perez CA; Pignata ML
    Environ Res; 2005 Jan; 97(1):50-7. PubMed ID: 15476733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of atmospheric heavy metals using two lichen species in Katni and Rewa cities, India.
    Bajpai R; Mishra GK; Mohabe S; Upreti DK; Nayaka S
    J Environ Biol; 2011 Mar; 32(2):195-9. PubMed ID: 21882655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrity of lichen cell membranes as an indicator of heavy-metal pollution levels in soil.
    Osyczka P; Rola K
    Ecotoxicol Environ Saf; 2019 Jun; 174():26-34. PubMed ID: 30818257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations in the elemental and metabolic profiles of the lichen Dirinaria picta after road traffic exposure.
    Huang X; Wang L; Laserna AKC; Li SFY
    Metallomics; 2017 Nov; 9(11):1610-1621. PubMed ID: 29072738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudovernia furfuracea.
    Oztetik E; Cicek A
    Environ Toxicol Chem; 2011 Jul; 30(7):1629-36. PubMed ID: 21462237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica.
    Poblet A; Andrade S; Scagliola M; Vodopivez C; Curtosi A; Pucci A; Marcovecchio J
    Sci Total Environ; 1997 Nov; 207(2-3):187-94. PubMed ID: 9447747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C Italy).
    Paoli L; Grassi A; Vannini A; Maslaňáková I; Bil'ová I; Bačkor M; Corsini A; Loppi S
    Waste Manag; 2015 Aug; 42():67-73. PubMed ID: 25987289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity.
    Paoli L; Pisani T; Guttová A; Sardella G; Loppi S
    Ecotoxicol Environ Saf; 2011 May; 74(4):650-7. PubMed ID: 21251715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lichens as bioindicators of atmospheric heavy metal pollution in Singapore.
    Ng OH; Tan BC; Obbard JP
    Environ Monit Assess; 2006 Dec; 123(1-3):63-74. PubMed ID: 17082905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors.
    Gerdol R; Marchesini R; Iacumin P; Brancaleoni L
    Chemosphere; 2014 Aug; 108():388-95. PubMed ID: 24630254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy).
    Loppi S; Frati L; Paoli L; Bigagli V; Rossetti C; Bruscoli C; Corsini A
    Sci Total Environ; 2004 Jun; 326(1-3):113-22. PubMed ID: 15142770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen.
    Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R
    Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal accumulation and physiological response of the lichens transplanted near a landfill in central Lithuania.
    Sujetovienė G; Smilgaitis P; Dagiliūtė R; Žaltauskaitė J
    Waste Manag; 2019 Feb; 85():60-65. PubMed ID: 30803614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of fungal parasites in tri-trophic interactions involving lichens and lichen-feeding snails.
    Asplund J; Gauslaa Y; Merinero S
    New Phytol; 2016 Sep; 211(4):1352-7. PubMed ID: 27094697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocean to continent transfer of atmospheric Se as revealed by epiphytic lichens.
    Wen H; Carignan J
    Environ Pollut; 2009 Oct; 157(10):2790-7. PubMed ID: 19467747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span.
    Brunialti G; Frati L
    Sci Total Environ; 2007 Nov; 387(1-3):289-300. PubMed ID: 17716704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lichen as a Biomonitor for Vehicular Emission of Metals: A Risk Assessment of Lichen Consumption by the Sichuan Snub-Nosed Monkey (Rhinopithecus roxellana).
    Huang YP; Xiang JT; Wang CH; Ren D; JohnsonDavid ; Xu T
    Ecotoxicol Environ Saf; 2019 Sep; 180():679-685. PubMed ID: 31146154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in the town of Pistoia (c Italy).
    Loppi S; Corsini A
    Environ Monit Assess; 2003 Aug; 86(3):289-301. PubMed ID: 12858969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.