These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 26437350)
1. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens. Gauslaa Y; Yemets OA; Asplund J; Solhaug KA Sci Total Environ; 2016 Jan; 541():795-801. PubMed ID: 26437350 [TBL] [Abstract][Full Text] [Related]
2. Seasonal and spatial variation in carbon based secondary compounds in green algal and cyanobacterial members of the epiphytic lichen genus Lobaria. Gauslaa Y; Bidussi M; Solhaug KA; Asplund J; Larsson P Phytochemistry; 2013 Oct; 94():91-8. PubMed ID: 23664176 [TBL] [Abstract][Full Text] [Related]
3. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada. Carreras HA; Wannaz ED; Perez CA; Pignata ML Environ Res; 2005 Jan; 97(1):50-7. PubMed ID: 15476733 [TBL] [Abstract][Full Text] [Related]
4. Determination of atmospheric heavy metals using two lichen species in Katni and Rewa cities, India. Bajpai R; Mishra GK; Mohabe S; Upreti DK; Nayaka S J Environ Biol; 2011 Mar; 32(2):195-9. PubMed ID: 21882655 [TBL] [Abstract][Full Text] [Related]
5. Integrity of lichen cell membranes as an indicator of heavy-metal pollution levels in soil. Osyczka P; Rola K Ecotoxicol Environ Saf; 2019 Jun; 174():26-34. PubMed ID: 30818257 [TBL] [Abstract][Full Text] [Related]
6. Correlations in the elemental and metabolic profiles of the lichen Dirinaria picta after road traffic exposure. Huang X; Wang L; Laserna AKC; Li SFY Metallomics; 2017 Nov; 9(11):1610-1621. PubMed ID: 29072738 [TBL] [Abstract][Full Text] [Related]
7. Effects of urban air pollutants on elemental accumulation and identification of oxidative stress biomarkers in the transplanted lichen Pseudovernia furfuracea. Oztetik E; Cicek A Environ Toxicol Chem; 2011 Jul; 30(7):1629-36. PubMed ID: 21462237 [TBL] [Abstract][Full Text] [Related]
8. The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Poblet A; Andrade S; Scagliola M; Vodopivez C; Curtosi A; Pucci A; Marcovecchio J Sci Total Environ; 1997 Nov; 207(2-3):187-94. PubMed ID: 9447747 [TBL] [Abstract][Full Text] [Related]
9. Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C Italy). Paoli L; Grassi A; Vannini A; Maslaňáková I; Bil'ová I; Bačkor M; Corsini A; Loppi S Waste Manag; 2015 Aug; 42():67-73. PubMed ID: 25987289 [TBL] [Abstract][Full Text] [Related]
10. Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity. Paoli L; Pisani T; Guttová A; Sardella G; Loppi S Ecotoxicol Environ Saf; 2011 May; 74(4):650-7. PubMed ID: 21251715 [TBL] [Abstract][Full Text] [Related]
11. Lichens as bioindicators of atmospheric heavy metal pollution in Singapore. Ng OH; Tan BC; Obbard JP Environ Monit Assess; 2006 Dec; 123(1-3):63-74. PubMed ID: 17082905 [TBL] [Abstract][Full Text] [Related]
12. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Gerdol R; Marchesini R; Iacumin P; Brancaleoni L Chemosphere; 2014 Aug; 108():388-95. PubMed ID: 24630254 [TBL] [Abstract][Full Text] [Related]
13. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Loppi S; Frati L; Paoli L; Bigagli V; Rossetti C; Bruscoli C; Corsini A Sci Total Environ; 2004 Jun; 326(1-3):113-22. PubMed ID: 15142770 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850 [TBL] [Abstract][Full Text] [Related]
15. Metal accumulation and physiological response of the lichens transplanted near a landfill in central Lithuania. Sujetovienė G; Smilgaitis P; Dagiliūtė R; Žaltauskaitė J Waste Manag; 2019 Feb; 85():60-65. PubMed ID: 30803614 [TBL] [Abstract][Full Text] [Related]
16. The role of fungal parasites in tri-trophic interactions involving lichens and lichen-feeding snails. Asplund J; Gauslaa Y; Merinero S New Phytol; 2016 Sep; 211(4):1352-7. PubMed ID: 27094697 [TBL] [Abstract][Full Text] [Related]
17. Ocean to continent transfer of atmospheric Se as revealed by epiphytic lichens. Wen H; Carignan J Environ Pollut; 2009 Oct; 157(10):2790-7. PubMed ID: 19467747 [TBL] [Abstract][Full Text] [Related]
18. Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span. Brunialti G; Frati L Sci Total Environ; 2007 Nov; 387(1-3):289-300. PubMed ID: 17716704 [TBL] [Abstract][Full Text] [Related]
19. Lichen as a Biomonitor for Vehicular Emission of Metals: A Risk Assessment of Lichen Consumption by the Sichuan Snub-Nosed Monkey (Rhinopithecus roxellana). Huang YP; Xiang JT; Wang CH; Ren D; JohnsonDavid ; Xu T Ecotoxicol Environ Saf; 2019 Sep; 180():679-685. PubMed ID: 31146154 [TBL] [Abstract][Full Text] [Related]
20. Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in the town of Pistoia (c Italy). Loppi S; Corsini A Environ Monit Assess; 2003 Aug; 86(3):289-301. PubMed ID: 12858969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]