These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26437747)

  • 41. A microfluidic photoelectrochemical cell for solar-driven CO
    Kalamaras E; Belekoukia M; Tan JZY; Xuan J; Maroto-Valer MM; Andresen JM
    Faraday Discuss; 2019 Jul; 215(0):329-344. PubMed ID: 30942213
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sustainable production of green feed from carbon dioxide and hydrogen.
    Landau MV; Vidruk R; Herskowitz M
    ChemSusChem; 2014 Mar; 7(3):785-94. PubMed ID: 24678062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aqueous Photoelectrochemical CO
    Shang B; Rooney CL; Gallagher DJ; Wang BT; Krayev A; Shema H; Leitner O; Harmon NJ; Xiao L; Sheehan C; Bottum SR; Gross E; Cahoon JF; Mallouk TE; Wang H
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202215213. PubMed ID: 36445830
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solar Hydrogen Production Using Molecular Catalysts Immobilized on Gallium Phosphide (111)A and (111)B Polymer-Modified Photocathodes.
    Beiler AM; Khusnutdinova D; Jacob SI; Moore GF
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):10038-47. PubMed ID: 26998554
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO
    Soucy TL; Dean WS; Zhou J; Rivera Cruz KE; McCrory CCL
    Acc Chem Res; 2022 Feb; 55(3):252-261. PubMed ID: 35044745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles.
    Chen Y; Li CW; Kanan MW
    J Am Chem Soc; 2012 Dec; 134(49):19969-72. PubMed ID: 23171134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity.
    Arafa WA; Kärkäs MD; Lee BL; Åkermark T; Liao RZ; Berends HM; Messinger J; Siegbahn PE; Åkermark B
    Phys Chem Chem Phys; 2014 Jun; 16(24):11950-64. PubMed ID: 24554036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells.
    Brennaman MK; Dillon RJ; Alibabaei L; Gish MK; Dares CJ; Ashford DL; House RL; Meyer GJ; Papanikolas JM; Meyer TJ
    J Am Chem Soc; 2016 Oct; 138(40):13085-13102. PubMed ID: 27654634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-electron carbon dioxide reduction catalyzed by rhenium(I) bis(imino)acenaphthene carbonyl complexes.
    Portenkirchner E; Kianfar E; Sariciftci NS; Knör G
    ChemSusChem; 2014 May; 7(5):1347-51. PubMed ID: 24737649
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Co(II)-Ru(II) dyad relevant to light-driven water oxidation catalysis.
    López AM; Natali M; Pizzolato E; Chiorboli C; Bonchio M; Sartorel A; Scandola F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12000-7. PubMed ID: 24664104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proton-electron transport and transfer in electrocatalytic films. Application to a cobalt-based O2-evolution catalyst.
    Bediako DK; Costentin C; Jones EC; Nocera DG; Savéant JM
    J Am Chem Soc; 2013 Jul; 135(28):10492-502. PubMed ID: 23822172
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode.
    Bachmeier A; Hall S; Ragsdale SW; Armstrong FA
    J Am Chem Soc; 2014 Oct; 136(39):13518-21. PubMed ID: 25237714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and TiO
    Sun X; Jiang J; Yang Y; Shan Y; Gong L; Wang M
    ACS Appl Mater Interfaces; 2019 May; 11(21):19132-19140. PubMed ID: 31062963
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation.
    Zhang L; Gao Y; Ding X; Yu Z; Sun L
    ChemSusChem; 2014 Oct; 7(10):2801-4. PubMed ID: 25139154
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis.
    Sivula K
    J Phys Chem Lett; 2013 May; 4(10):1624-33. PubMed ID: 26282969
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces.
    Yang J; Walczak K; Anzenberg E; Toma FM; Yuan G; Beeman J; Schwartzberg A; Lin Y; Hettick M; Javey A; Ager JW; Yano J; Frei H; Sharp ID
    J Am Chem Soc; 2014 Apr; 136(17):6191-4. PubMed ID: 24720554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots.
    Park H; Ou HH; Colussi AJ; Hoffmann MR
    J Phys Chem A; 2015 May; 119(19):4658-66. PubMed ID: 25611343
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.
    Jang YJ; Jeong I; Lee J; Lee J; Ko MJ; Lee JS
    ACS Nano; 2016 Jul; 10(7):6980-7. PubMed ID: 27359299
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-driven electron transfer between a photosensitizer and a proton-reducing catalyst co-adsorbed to NiO.
    Gardner JM; Beyler M; Karnahl M; Tschierlei S; Ott S; Hammarström L
    J Am Chem Soc; 2012 Nov; 134(47):19322-5. PubMed ID: 23140238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.