These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 26438141)
1. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. Moon HG; Oh K; Lee J; Lee M; Kim JY; Yoo TK; Seo MW; Park AK; Ryu HS; Jung EJ; Kim N; Jeong S; Han W; Lee DS; Noh DY Breast Cancer Res Treat; 2015 Nov; 154(1):13-22. PubMed ID: 26438141 [TBL] [Abstract][Full Text] [Related]
2. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Powell E; Shao J; Yuan Y; Chen HC; Cai S; Echeverria GV; Mistry N; Decker KF; Schlosberg C; Do KA; Edwards JR; Liang H; Piwnica-Worms D; Piwnica-Worms H Breast Cancer Res; 2016 Jan; 18(1):13. PubMed ID: 26818199 [TBL] [Abstract][Full Text] [Related]
3. A novel patient-derived xenograft model for claudin-low triple-negative breast cancer. Matossian MD; Burks HE; Bowles AC; Elliott S; Hoang VT; Sabol RA; Pashos NC; O'Donnell B; Miller KS; Wahba BM; Bunnell BA; Moroz K; Zea AH; Jones SD; Ochoa AC; Al-Khami AA; Hossain F; Riker AI; Rhodes LV; Martin EC; Miele L; Burow ME; Collins-Burow BM Breast Cancer Res Treat; 2018 Jun; 169(2):381-390. PubMed ID: 29392581 [TBL] [Abstract][Full Text] [Related]
4. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy. Kren BT; Unger GM; Abedin MJ; Vogel RI; Henzler CM; Ahmed K; Trembley JH Breast Cancer Res; 2015; 17():19. PubMed ID: 25837326 [TBL] [Abstract][Full Text] [Related]
5. Establishment of chemosensitivity tests in triple-negative and BRCA-mutated breast cancer patient-derived xenograft models. Park HS; Lee JD; Kim JY; Park S; Kim JH; Han HJ; Choi YA; Choi AR; Sohn JH; Kim SI PLoS One; 2019; 14(12):e0225082. PubMed ID: 31821346 [TBL] [Abstract][Full Text] [Related]
6. A large collection of integrated genomically characterized patient-derived xenografts highlighting the heterogeneity of triple-negative breast cancer. Coussy F; de Koning L; Lavigne M; Bernard V; Ouine B; Boulai A; El Botty R; Dahmani A; Montaudon E; Assayag F; Morisset L; Huguet L; Sourd L; Painsec P; Callens C; Chateau-Joubert S; Servely JL; Larcher T; Reyes C; Girard E; Pierron G; Laurent C; Vacher S; Baulande S; Melaabi S; Vincent-Salomon A; Gentien D; Dieras V; Bieche I; Marangoni E Int J Cancer; 2019 Oct; 145(7):1902-1912. PubMed ID: 30859564 [TBL] [Abstract][Full Text] [Related]
7. Capecitabine Efficacy Is Correlated with TYMP and RB1 Expression in PDX Established from Triple-Negative Breast Cancers. Marangoni E; Laurent C; Coussy F; El-Botty R; Château-Joubert S; Servely JL; de Plater L; Assayag F; Dahmani A; Montaudon E; Nemati F; Fleury J; Vacher S; Gentien D; Rapinat A; Foidart P; Sounni NE; Noel A; Vincent-Salomon A; Lae M; Decaudin D; Roman-Roman S; Bièche I; Piccart M; Reyal F Clin Cancer Res; 2018 Jun; 24(11):2605-2615. PubMed ID: 29463559 [No Abstract] [Full Text] [Related]
8. JAK2 regulates paclitaxel resistance in triple negative breast cancers. Han J; Yun J; Quan M; Kang W; Jung JG; Heo W; Li S; Lee KJ; Son HY; Kim JH; Choi J; Noh DY; Na D; Ryu HS; Lee C; Kim JI; Moon HG J Mol Med (Berl); 2021 Dec; 99(12):1783-1795. PubMed ID: 34626199 [TBL] [Abstract][Full Text] [Related]
9. Higher levels of TIMP-1 expression are associated with a poor prognosis in triple-negative breast cancer. Cheng G; Fan X; Hao M; Wang J; Zhou X; Sun X Mol Cancer; 2016 Apr; 15(1):30. PubMed ID: 27130446 [TBL] [Abstract][Full Text] [Related]
10. Expression of MT4-MMP, EGFR, and RB in Triple-Negative Breast Cancer Strongly Sensitizes Tumors to Erlotinib and Palbociclib Combination Therapy. Foidart P; Yip C; Radermacher J; Blacher S; Lienard M; Montero-Ruiz L; Maquoi E; Montaudon E; Château-Joubert S; Collignon J; Coibion M; Jossa V; Marangoni E; Noël A; Sounni NE; Jerusalem G Clin Cancer Res; 2019 Mar; 25(6):1838-1850. PubMed ID: 30504427 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of androgen receptor in two patient-derived xenograft models of triple negative breast cancer. Wang X; Petrossian K; Huang MJ; Saeki K; Kanaya N; Chang G; Somlo G; Chen S J Steroid Biochem Mol Biol; 2021 Feb; 206():105791. PubMed ID: 33271252 [TBL] [Abstract][Full Text] [Related]
12. The small G-protein RalA promotes progression and metastasis of triple-negative breast cancer. Thies KA; Cole MW; Schafer RE; Spehar JM; Richardson DS; Steck SA; Das M; Lian AW; Ray A; Shakya R; Knoblaugh SE; Timmers CD; Ostrowski MC; Chakravarti A; Sizemore GM; Sizemore ST Breast Cancer Res; 2021 Jun; 23(1):65. PubMed ID: 34118960 [TBL] [Abstract][Full Text] [Related]
13. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Hatem R; El Botty R; Chateau-Joubert S; Servely JL; Labiod D; de Plater L; Assayag F; Coussy F; Callens C; Vacher S; Reyal F; Cosulich S; Diéras V; Bièche I; Marangoni E Oncotarget; 2016 Jul; 7(30):48206-48219. PubMed ID: 27374081 [TBL] [Abstract][Full Text] [Related]
14. Cross-species genomic and functional analyses identify a combination therapy using a CHK1 inhibitor and a ribonucleotide reductase inhibitor to treat triple-negative breast cancer. Bennett CN; Tomlinson CC; Michalowski AM; Chu IM; Luger D; Mittereder LR; Aprelikova O; Shou J; Piwinica-Worms H; Caplen NJ; Hollingshead MG; Green JE Breast Cancer Res; 2012 Jul; 14(4):R109. PubMed ID: 22812567 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models. Rosato RR; Dávila-González D; Choi DS; Qian W; Chen W; Kozielski AJ; Wong H; Dave B; Chang JC Breast Cancer Res; 2018 Sep; 20(1):108. PubMed ID: 30185216 [TBL] [Abstract][Full Text] [Related]
16. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Sabol RA; Bowles AC; Côté A; Wise R; O'Donnell B; Matossian MD; Hossain FM; Burks HE; Del Valle L; Miele L; Collins-Burow BM; Burow ME; Bunnell BA Breast Cancer Res; 2019 May; 21(1):67. PubMed ID: 31118047 [TBL] [Abstract][Full Text] [Related]
17. microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Guo GC; Wang JX; Han ML; Zhang LP; Li L Cell Oncol (Dordr); 2017 Apr; 40(2):157-166. PubMed ID: 28054302 [TBL] [Abstract][Full Text] [Related]
18. Identification of a stemness-related gene panel associated with BET inhibition in triple negative breast cancer. Serrano-Oviedo L; Nuncia-Cantarero M; Morcillo-Garcia S; Nieto-Jimenez C; Burgos M; Corrales-Sanchez V; Perez-Peña J; Győrffy B; Ocaña A; Galán-Moya EM Cell Oncol (Dordr); 2020 Jun; 43(3):431-444. PubMed ID: 32166583 [TBL] [Abstract][Full Text] [Related]
19. Integration of whole-genome sequencing and functional screening identifies a prognostic signature for lung metastasis in triple-negative breast cancer. Xie G; Yang H; Ma D; Sun Y; Chen H; Hu X; Jiang YZ; Shao ZM Int J Cancer; 2019 Nov; 145(10):2850-2860. PubMed ID: 30977117 [TBL] [Abstract][Full Text] [Related]
20. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model. Jung J; Jang K; Ju JM; Lee E; Lee JW; Kim HJ; Kim J; Lee SB; Ko BS; Son BH; Lee HJ; Gong G; Ahn SY; Choi JK; Singh SR; Chang S Cancer Lett; 2018 Aug; 428():127-138. PubMed ID: 29684420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]