BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26438430)

  • 1. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae.
    Matsushika A; Hoshino T
    J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1623-31. PubMed ID: 26438430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.
    van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J
    FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae.
    Sakihama Y; Hasunuma T; Kondo A
    J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic modeling and sensitivity analysis for higher ethanol production in self-cloning xylose-using Saccharomyces cerevisiae.
    Fukuda A; Kuriya Y; Konishi J; Mutaguchi K; Uemura T; Miura D; Okamoto M
    J Biosci Bioeng; 2019 May; 127(5):563-569. PubMed ID: 30482500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose alcoholic fermentation in the engineered yeast Saccharomyces cerevisiae.
    Dzanaeva L; Kruk B; Ruchala J; Sibirny A; Dmytruk K
    Antonie Van Leeuwenhoek; 2021 Sep; 114(9):1373-1385. PubMed ID: 34170419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S
    Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.
    Kato H; Suyama H; Yamada R; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1585-92. PubMed ID: 22406859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of mutational sptl5 gene to xylose utilization of Saccharomyces cerevisiae].
    Liu H; Tang W; Lai C; Yan M; Xu L; Ouyang P
    Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):875-9. PubMed ID: 19777815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization.
    Tomitaka M; Taguchi H; Fukuda K; Akamatsu T; Kida K
    J Biosci Bioeng; 2013 Dec; 116(6):706-15. PubMed ID: 23810666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.
    Jin YS; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.