These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Motor performance benefits of matched limb imitation in prosthesis users. Cusack WF; Patterson R; Thach S; Kistenberg RS; Wheaton LA Exp Brain Res; 2014 Jul; 232(7):2143-54. PubMed ID: 24643547 [TBL] [Abstract][Full Text] [Related]
3. Implicit development of gaze strategies support motor improvements during action encoding training of prosthesis use. Bayani KY; Lawson RR; Levinson L; Mitchell S; Atawala N; Otwell M; Rickerson B; Wheaton LA Neuropsychologia; 2019 Apr; 127():75-83. PubMed ID: 30807755 [TBL] [Abstract][Full Text] [Related]
4. Influence of Perspective of Action Observation Training on Residual Limb Control in Naïve Prosthesis Usage. Lawson DT; Cusack WF; Lawson R; Hardy A; Kistenberg R; Wheaton LA J Mot Behav; 2016; 48(5):446-54. PubMed ID: 27253208 [TBL] [Abstract][Full Text] [Related]
5. Kinematic analysis of motor learning in upper limb body-powered bypass prosthesis training. Bloomer C; Wang S; Kontson K PLoS One; 2020; 15(1):e0226563. PubMed ID: 31978051 [TBL] [Abstract][Full Text] [Related]
6. Neural activation differences in amputees during imitation of intact versus amputee movements. Cusack WF; Cope M; Nathanson S; Pirouz N; Kistenberg R; Wheaton LA Front Hum Neurosci; 2012; 6():182. PubMed ID: 22754516 [TBL] [Abstract][Full Text] [Related]
7. Remodeling of cortical activity for motor control following upper limb loss. Williams L; Pirouz N; Mizelle JC; Cusack W; Kistenberg R; Wheaton LA Clin Neurophysiol; 2016 Sep; 127(9):3128-3134. PubMed ID: 27472549 [TBL] [Abstract][Full Text] [Related]
8. Comparison of range-of-motion and variability in upper body movements between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks. Major MJ; Stine RL; Heckathorne CW; Fatone S; Gard SA J Neuroeng Rehabil; 2014 Sep; 11():132. PubMed ID: 25192744 [TBL] [Abstract][Full Text] [Related]
9. A Structured Rehabilitation Protocol for Improved Multifunctional Prosthetic Control: A Case Study. Roche AD; Vujaklija I; Amsüss S; Sturma A; Göbel P; Farina D; Aszmann OC J Vis Exp; 2015 Nov; (105):e52968. PubMed ID: 26575620 [TBL] [Abstract][Full Text] [Related]
10. Categorization of compensatory motions in transradial myoelectric prosthesis users. Hussaini A; Zinck A; Kyberd P Prosthet Orthot Int; 2017 Jun; 41(3):286-293. PubMed ID: 27473642 [TBL] [Abstract][Full Text] [Related]
11. Feedforward control strategies of subjects with transradial amputation in planar reaching. Metzger AJ; Dromerick AW; Schabowsky CN; Holley RJ; Monroe B; Lum PS J Rehabil Res Dev; 2010; 47(3):201-11. PubMed ID: 20665346 [TBL] [Abstract][Full Text] [Related]
12. Restoring natural upper limb movement through a wrist prosthetic module for partial hand amputees. Choi S; Cho W; Kim K J Neuroeng Rehabil; 2023 Oct; 20(1):135. PubMed ID: 37798778 [TBL] [Abstract][Full Text] [Related]
13. Training with an upper-limb prosthetic simulator to enhance transfer of skill across limbs. Weeks DL; Wallace SA; Anderson DI Arch Phys Med Rehabil; 2003 Mar; 84(3):437-43. PubMed ID: 12638114 [TBL] [Abstract][Full Text] [Related]
14. Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks. Thies SB; Kenney LP; Sobuh M; Galpin A; Kyberd P; Stine R; Major MJ Med Eng Phys; 2017 Sep; 47():137-143. PubMed ID: 28684214 [TBL] [Abstract][Full Text] [Related]
15. Myoelectric prosthesis users and non-disabled individuals wearing a simulated prosthesis exhibit similar compensatory movement strategies. Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS J Neuroeng Rehabil; 2021 May; 18(1):72. PubMed ID: 33933105 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Prosthesis Use on Hand Mental Rotation After Unilateral Upper-Limb Amputation. Guo X; Lin Z; Lyu Y; Bekrater-Bodmann R; Flor H; Tong S IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2046-2053. PubMed ID: 28489541 [TBL] [Abstract][Full Text] [Related]
17. Application of machine learning to the identification of joint degrees of freedom involved in abnormal movement during upper limb prosthesis use. Wang SL; Bloomer C; Civillico G; Kontson K PLoS One; 2021; 16(2):e0246795. PubMed ID: 33571311 [TBL] [Abstract][Full Text] [Related]
18. User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion. Davidson M; Bodine C; Weir RFF Disabil Rehabil Assist Technol; 2019 Apr; 14(3):312-315. PubMed ID: 29514521 [TBL] [Abstract][Full Text] [Related]
19. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements. Deijs M; Bongers RM; Ringeling-van Leusen ND; van der Sluis CK J Neuroeng Rehabil; 2016 Mar; 13():26. PubMed ID: 26979272 [TBL] [Abstract][Full Text] [Related]
20. The moving phantom: motor execution or motor imagery? Raffin E; Giraux P; Reilly KT Cortex; 2012 Jun; 48(6):746-57. PubMed ID: 21397901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]