BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26438537)

  • 1. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria.
    Chang C; Tesar C; Li X; Kim Y; Rodionov DA; Joachimiak A
    Nucleic Acids Res; 2015 Dec; 43(21):10546-59. PubMed ID: 26438537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions.
    Kuge T; Teramoto H; Inui M
    J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional domains of the Bacillus subtilis transcription factor AraR and identification of amino acids important for nucleoprotein complex assembly and effector binding.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    J Bacteriol; 2006 Apr; 188(8):3024-36. PubMed ID: 16585763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple Signals Govern Utilization of a Polysaccharide in the Gut Bacterium Bacteroides thetaiotaomicron.
    Schwalm ND; Townsend GE; Groisman EA
    mBio; 2016 Oct; 7(5):. PubMed ID: 27729509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators.
    Rodionov DA; De Ingeniis J; Mancini C; Cimadamore F; Zhang H; Osterman AL; Raffaelli N
    Nucleic Acids Res; 2008 Apr; 36(6):2047-59. PubMed ID: 18276643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping.
    Mota LJ; Sarmento LM; de Sá-Nogueira I
    J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of rigidity in DNA looping-unlooping by AraC.
    Harmer T; Wu M; Schleif R
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):427-31. PubMed ID: 11209047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Aromatic Compounds Block DNA Binding of HcaR Catabolite Regulator.
    Kim Y; Joachimiak G; Bigelow L; Babnigg G; Joachimiak A
    J Biol Chem; 2016 Jun; 291(25):13243-56. PubMed ID: 27129205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family.
    Hong M; Fuangthong M; Helmann JD; Brennan RG
    Mol Cell; 2005 Oct; 20(1):131-41. PubMed ID: 16209951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks.
    Ravcheev DA; Godzik A; Osterman AL; Rodionov DA
    BMC Genomics; 2013 Dec; 14():873. PubMed ID: 24330590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric control of transcription in GntR family of transcription regulators: A structural overview.
    Jain D
    IUBMB Life; 2015 Jul; 67(7):556-63. PubMed ID: 26172911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors.
    Townsend PD; Jungwirth B; Pojer F; Bußmann M; Money VA; Cole ST; Pühler A; Tauch A; Bott M; Cann MJ; Pohl E
    PLoS One; 2014; 9(12):e113265. PubMed ID: 25469635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the VanR transcription factor and the role of its unique α-helix in effector recognition.
    Kwak YM; Park SC; Na HW; Kang SG; Lee GS; Ko HJ; Kim PH; Oh BC; Yoon SI
    FEBS J; 2018 Oct; 285(20):3786-3800. PubMed ID: 30095229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards novel amino acid-base contacts in gene regulatory proteins: AraR--a case study.
    Correia IL; Franco IS; de Sá-Nogueira I
    PLoS One; 2014; 9(11):e111802. PubMed ID: 25364981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AraR, an L-Arabinose-Responding Transcription Factor, Negatively Regulates Resistance of Mycobacterium smegmatis to Isoniazid.
    Zhou L; He ZG; Li W
    Biochemistry (Mosc); 2019 May; 84(5):540-552. PubMed ID: 31234768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the intermediate complex of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator reveals detailed mechanism of arginine repression.
    Cherney LT; Cherney MM; Garen CR; James MN
    J Mol Biol; 2010 Jun; 399(2):240-54. PubMed ID: 20382162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into operator recognition by BioQ in the Mycobacterium smegmatis biotin synthesis pathway.
    Yan L; Tang Q; Guan Z; Pei K; Zou T; He J
    Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):1843-1851. PubMed ID: 29852200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.