BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26438844)

  • 1. Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays.
    Honkela A; Peltonen J; Topa H; Charapitsa I; Matarese F; Grote K; Stunnenberg HG; Reid G; Lawrence ND; Rattray M
    Proc Natl Acad Sci U S A; 2015 Oct; 112(42):13115-20. PubMed ID: 26438844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of RNA polymerase II transcription dynamics from chromatin immunoprecipitation time course data.
    wa Maina C; Honkela A; Matarese F; Grote K; Stunnenberg HG; Reid G; Lawrence ND; Rattray M
    PLoS Comput Biol; 2014 May; 10(5):e1003598. PubMed ID: 24830797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Quantitative Profiling Tool for Diverse Genomic Data Types Reveals Potential Associations between Chromatin and Pre-mRNA Processing.
    Kremsky I; Bellora N; Eyras E
    PLoS One; 2015; 10(7):e0132448. PubMed ID: 26207626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Considering the kinetics of mRNA synthesis in the analysis of the genome and epigenome reveals determinants of co-transcriptional splicing.
    Davis-Turak JC; Allison K; Shokhirev MN; Ponomarenko P; Tsimring LS; Glass CK; Johnson TL; Hoffmann A
    Nucleic Acids Res; 2015 Jan; 43(2):699-707. PubMed ID: 25541195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of co-transcriptional splicing from RNA-Seq data.
    Herzel L; Neugebauer KM
    Methods; 2015 Sep; 85():36-43. PubMed ID: 25929182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic simulation and statistical inference platform for visualization and estimation of transcriptional kinetics.
    Gorin G; Wang M; Golding I; Xu H
    PLoS One; 2020; 15(3):e0230736. PubMed ID: 32214380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.
    Chen X; Jung JG; Shajahan-Haq AN; Clarke R; Shih IeM; Wang Y; Magnani L; Wang TL; Xuan J
    Nucleic Acids Res; 2016 Apr; 44(7):e65. PubMed ID: 26704972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses.
    Davari K; Lichti J; Gallus C; Greulich F; Uhlenhaut NH; Heinig M; Friedel CC; Glasmacher E
    Cell Rep; 2017 Apr; 19(3):643-654. PubMed ID: 28423325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global donor and acceptor splicing site kinetics in human cells.
    Wachutka L; Caizzi L; Gagneur J; Cramer P
    Elife; 2019 Apr; 8():. PubMed ID: 31025937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells.
    Dago DN; Scafoglio C; Rinaldi A; Memoli D; Giurato G; Nassa G; Ravo M; Rizzo F; Tarallo R; Weisz A
    BMC Genomics; 2015 May; 16(1):367. PubMed ID: 25956916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hidden Markov model to identify combinatorial epigenetic regulation patterns for estrogen receptor α target genes.
    Bonneville R; Jin VX
    Bioinformatics; 2013 Jan; 29(1):22-8. PubMed ID: 23104890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic modeling of the mRNA life process: A generalized master equation.
    Shi C; Yang X; Zhang J; Zhou T
    Biophys J; 2023 Oct; 122(20):4023-4041. PubMed ID: 37653725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide dynamics of RNA synthesis, processing, and degradation without RNA metabolic labeling.
    Furlan M; Galeota E; Gaudio ND; Dassi E; Caselle M; de Pretis S; Pelizzola M
    Genome Res; 2020 Oct; 30(10):1492-1507. PubMed ID: 32978246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection.
    Birkenheuer CH; Danko CG; Baines JD
    J Virol; 2018 Apr; 92(8):. PubMed ID: 29437966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalizing RNA velocity to transient cell states through dynamical modeling.
    Bergen V; Lange M; Peidli S; Wolf FA; Theis FJ
    Nat Biotechnol; 2020 Dec; 38(12):1408-1414. PubMed ID: 32747759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neo-tanshinlactone selectively inhibits the proliferation of estrogen receptor positive breast cancer cells through transcriptional down-regulation of estrogen receptor alpha.
    Lin W; Huang J; Liao X; Yuan Z; Feng S; Xie Y; Ma W
    Pharmacol Res; 2016 Sep; 111():849-858. PubMed ID: 27491559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts.
    Sousa-Luís R; Dujardin G; Zukher I; Kimura H; Weldon C; Carmo-Fonseca M; Proudfoot NJ; Nojima T
    Mol Cell; 2021 May; 81(9):1935-1950.e6. PubMed ID: 33735606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells.
    Williams C; Edvardsson K; Lewandowski SA; Ström A; Gustafsson JA
    Oncogene; 2008 Feb; 27(7):1019-32. PubMed ID: 17700529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of SPLINDID, a semiparametric, model-based method for pharmacogenomic modeling of mRNA dynamics.
    Bhasi K; Forrest A; Ramanathan M
    Pharm Res; 2006 Apr; 23(4):663-9. PubMed ID: 16550471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity.
    Kinyamu HK; Bennett BD; Bushel PR; Archer TK
    J Biol Chem; 2020 Jan; 295(5):1271-1287. PubMed ID: 31806706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.