BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26438890)

  • 1. Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy.
    Wuytens PC; Subramanian AZ; De Vos WH; Skirtach AG; Baets R
    Analyst; 2015 Dec; 140(24):8080-7. PubMed ID: 26438890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules.
    Severyukhina AN; Parakhonskiy BV; Prikhozhdenko ES; Gorin DA; Sukhorukov GB; Möhwald H; Yashchenok AM
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15466-73. PubMed ID: 26126080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates.
    Cialla D; Siebert R; Hübner U; Möller R; Schneidewind H; Mattheis R; Petschulat J; Tünnermann A; Pertsch T; Dietzek B; Popp J
    Anal Bioanal Chem; 2009 Aug; 394(7):1811-8. PubMed ID: 19333584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix.
    Ferreira J; Teixeira FS; Zanatta AR; Salvadori MC; Gordon R; Oliveira ON
    Phys Chem Chem Phys; 2012 Feb; 14(6):2050-5. PubMed ID: 22234375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new strategy to prepare surface-enhanced Raman scattering-active substrates by electrochemical pulse deposition of gold nanoparticles.
    Mai FD; Hsu TC; Liu YC; Yang KH; Chen BC
    Chem Commun (Camb); 2011 Mar; 47(10):2958-60. PubMed ID: 21243131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial.
    Hu WQ; Liang EJ; Ding P; Cai GW; Xue QZ
    Opt Express; 2009 Nov; 17(24):21843-9. PubMed ID: 19997429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes.
    Huefner A; Septiadi D; Wilts BD; Patel II; Kuan WL; Fragniere A; Barker RA; Mahajan S
    Methods; 2014 Jul; 68(2):354-63. PubMed ID: 24583117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications.
    Intartaglia R; Das G; Bagga K; Gopalakrishnan A; Genovese A; Povia M; Di Fabrizio E; Cingolani R; Diaspro A; Brandi F
    Phys Chem Chem Phys; 2013 Mar; 15(9):3075-82. PubMed ID: 23196320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS).
    Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L
    Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules.
    Gellner M; Kömpe K; Schlücker S
    Anal Bioanal Chem; 2009 Aug; 394(7):1839-44. PubMed ID: 19543719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable SERS using gold nanoaggregates on an elastomeric substrate.
    Hossain MK; Willmott GR; Etchegoin PG; Blaikie RJ; Tallon JL
    Nanoscale; 2013 Oct; 5(19):8945-50. PubMed ID: 23958839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of thorny Au nanostructures on polyaniline surfaces for sensitive surface-enhanced Raman spectroscopy.
    Li S; Xu P; Ren Z; Zhang B; Du Y; Han X; Mack NH; Wang HL
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):49-54. PubMed ID: 23234505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.
    Ma X; Xia Y; Ni L; Song L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.