These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26438890)

  • 61. Raman detection of localized transferrin-coated gold nanoparticles inside a single cell.
    Park JH; Park J; Dembereldorj U; Cho K; Lee K; Yang SI; Lee SY; Joo SW
    Anal Bioanal Chem; 2011 Sep; 401(5):1631-9. PubMed ID: 21744236
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging.
    Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D
    Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering at gold nanosphere array substrate.
    Liu X; Huan S; Bu Y; Shen G; Yu R
    Talanta; 2008 May; 75(3):797-803. PubMed ID: 18585149
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles.
    Ye Y; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6442-8. PubMed ID: 22955571
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles.
    Schwartzberg AM; Oshiro TY; Zhang JZ; Huser T; Talley CE
    Anal Chem; 2006 Jul; 78(13):4732-6. PubMed ID: 16808490
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thermally stable plasmonic nanocermets grown on microengineered surfaces as versatile surface enhanced Raman spectroscopy sensors for multianalyte detection.
    Gupta N; Gupta D; Aggarwal S; Siddhanta S; Narayana C; Barshilia HC
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22733-42. PubMed ID: 25456045
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy.
    Cai Q; Li LH; Yu Y; Liu Y; Huang S; Chen Y; Watanabe K; Taniguchi T
    Phys Chem Chem Phys; 2015 Mar; 17(12):7761-6. PubMed ID: 25714659
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrochemical Fabrication of Nanostructures on Porous Silicon for Biochemical Sensing Platforms.
    Ko E; Hwang J; Kim JH; Lee JH; Lee SH; Tran VK; Chung WS; Park CH; Choo J; Seong GH
    Anal Sci; 2016; 32(6):681-6. PubMed ID: 27302590
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.
    Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J
    Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ultra sensitive label free surface enhanced Raman spectroscopy method for the detection of biomolecules.
    Hughes J; Izake EL; Lott WB; Ayoko GA; Sillence M
    Talanta; 2014 Dec; 130():20-5. PubMed ID: 25159374
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Controlled Assembly of Gold Nanostructures on a Solid Substrate via Imidazole Directed Hydrogen Bonding for High Performance Surface Enhance Raman Scattering Sensing of Hypochlorous Acid.
    Sun J; Liu R; Tang J; Zhang Z; Zhou X; Liu J
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16730-7. PubMed ID: 26167718
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rapid SERS-based recognition of cell secretome on the folic acid-functionalized gold gratings.
    Guselnikova O; Dvorankova B; Kakisheva K; Kalachyova Y; Postnikov P; Svorcik V; Lyutakov O
    Anal Bioanal Chem; 2019 Jun; 411(15):3309-3319. PubMed ID: 31123778
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In-situ partial sintering of gold-nanoparticle sheets for SERS applications.
    He J; Lin XM; Divan R; Jaeger HM
    Small; 2011 Dec; 7(24):3487-92. PubMed ID: 22021074
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A "turn-off" SERS assay of heparin with high selectivity based on heparin-peptide complex and Raman labelled gold nanoparticles.
    Qu G; Zhang G; Wu Z; Shen A; Wang J; Hu J
    Biosens Bioelectron; 2014 Oct; 60():124-9. PubMed ID: 24793094
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy.
    Nguyen TH; Zhang Z; Mustapha A; Li H; Lin M
    J Agric Food Chem; 2014 Oct; 62(43):10445-51. PubMed ID: 25317673
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid.
    Jia JL; Xu HH; Zhang GR; Hu Z; Xu BQ
    Nanotechnology; 2012 Dec; 23(49):495710. PubMed ID: 23149673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.