These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26438890)

  • 81. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures.
    Wu D; Chen Y; Hou S; Fang W; Duan H
    Chembiochem; 2019 Oct; 20(19):2432-2441. PubMed ID: 30957950
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy.
    Zhang X; Zheng Y; Liu X; Lu W; Dai J; Lei DY; MacFarlane DR
    Adv Mater; 2015 Feb; 27(6):1090-6. PubMed ID: 25534763
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Solution based, on chip direct growth of three-dimensionally wrinkled gold nanoparticles for a SERS active substrate.
    Lee S; Song HD; Yang YI; Kim GP; Choi I; Yi J
    Chem Commun (Camb); 2015 Jan; 51(1):213-6. PubMed ID: 25406715
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Sensitive and label-free quantification of cellular biothiols by competitive surface-enhanced Raman spectroscopy.
    Zhao J; Zhang K; Ji J; Liu B
    Talanta; 2016 May; 152():196-202. PubMed ID: 26992511
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Label-free SERS diagnostics of radiation-induced injury via detecting the biomarker Raman signal in the serum and urine bio-samples based on Au-NPs array substrates.
    Muhammad M; Shao C; Huang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117282. PubMed ID: 31247463
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Nanotrap-Enhanced Raman Spectroscopy: An Efficient Technique for Trace Detection of Bioanalytes.
    Dutta SB; Shrivastava R; Krishna H; Khan KM; Gupta S; Majumder SK
    Anal Chem; 2019 Mar; 91(5):3555-3560. PubMed ID: 30758188
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Dual purpose fibre - SERS pH sensing and bacterial analysis.
    Fleming H; McAughtrie S; Mills B; Tanner MG; Marks A; Campbell CJ
    Analyst; 2018 Dec; 143(24):5918-5925. PubMed ID: 30289143
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Feature-based recognition of surface-enhanced Raman spectra for biological targets.
    Pavillon N; Bando K; Fujita K; Smith NI
    J Biophotonics; 2013 Aug; 6(8):587-97. PubMed ID: 23192987
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Plasmonic Gold Nanohole Array for Surface-Enhanced Raman Scattering Detection of DNA Methylation.
    Luo X; Xing Y; Galvan DD; Zheng E; Wu P; Cai C; Yu Q
    ACS Sens; 2019 Jun; 4(6):1534-1542. PubMed ID: 31074265
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Shedding light on the extinction-enhancement duality in gold nanostar-enhanced Raman spectroscopy.
    Li M; Kang JW; Dasari RR; Barman I
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14115-9. PubMed ID: 25331156
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Developing Hollow-Channel Gold Nanoflowers as Trimodal Intracellular Nanoprobes.
    Ye S; Wheeler MC; McLaughlan JR; Tamang A; Diggle CP; Cespedes O; Markham AF; Coletta PL; Evans SD
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30096801
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions.
    Li T; Guo L; Wang Z
    Anal Sci; 2008 Jul; 24(7):907-10. PubMed ID: 18614834
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Surface-Enhanced Raman Spectroscopy Characterization of Salt-Induced Aggregation of Gold Nanoparticles.
    Chan MY; Leng W; Vikesland PJ
    Chemphyschem; 2018 Jan; 19(1):24-28. PubMed ID: 29068113
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite.
    Yamazoe S; Naya M; Shiota M; Morikawa T; Kubo A; Tani T; Hishiki T; Horiuchi T; Suematsu M; Kajimura M
    ACS Nano; 2014 Jun; 8(6):5622-32. PubMed ID: 24865176
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Gold nanoaggregates for probing single-living cell based on surface-enhanced Raman spectroscopy.
    Lu P; Wang J; Lin J; Lin J; Liu N; Huang Z; Li B; Zeng H; Chen R
    J Biomed Opt; 2015 May; 20(5):051005. PubMed ID: 25388888
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A nanoporous metallic mat showing excellent and stable surface enhanced Raman spectroscopy activities.
    Kim NJ; Lin M
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5077-82. PubMed ID: 21125852
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A nanoaggregate-on-mirror platform for molecular and biomolecular detection by surface-enhanced Raman spectroscopy.
    Wallace GQ; Tabatabaei M; Zuin MS; Workentin MS; Lagugné-Labarthet F
    Anal Bioanal Chem; 2016 Jan; 408(2):609-18. PubMed ID: 26521177
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties.
    Du J; Yu J; Xiong Y; Lin Z; Zhang H; Yang D
    Phys Chem Chem Phys; 2015 Jan; 17(2):1265-72. PubMed ID: 25420730
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Optimizing the SERS Performance of 3D Substrates through Tunable 3D Plasmonic Coupling toward Label-Free Liver Cancer Cell Classification.
    Han Y; Wu SR; Tian XD; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):28965-28974. PubMed ID: 32380829
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Distinguishing Cancerous Liver Cells Using Surface-Enhanced Raman Spectroscopy.
    Huang J; Liu S; Chen Z; Chen N; Pang F; Wang T
    Technol Cancer Res Treat; 2016 Feb; 15(1):36-43. PubMed ID: 25432931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.