These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26439123)

  • 41. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes.
    Yavuz Y; Ögütveren ÜB
    J Environ Manage; 2018 Feb; 207():151-158. PubMed ID: 29161644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid-kaolin synthetic water.
    Yang ZL; Gao BY; Yue QY; Wang Y
    J Hazard Mater; 2010 Jun; 178(1-3):596-603. PubMed ID: 20188465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water.
    Liu T; Chen ZL; Yu WZ; Shen JM; Gregory J
    Water Res; 2011 Aug; 45(14):4260-8. PubMed ID: 21704354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization.
    Huda N; Raman AAA; Bello MM; Ramesh S
    J Environ Manage; 2017 Dec; 204(Pt 1):75-81. PubMed ID: 28865309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Coagulation characteristics of different Al species on humic acid removal from water].
    Wu Z; Zhang PY; Zeng GM; Gao Y; Xiao HH; Zhou F
    Huan Jing Ke Xue; 2008 Jul; 29(7):1903-7. PubMed ID: 18828374
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.
    Genc A; Bakirci B
    Water Sci Technol; 2015; 71(8):1196-202. PubMed ID: 25909730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative contribution study and comparison between electrocoagulation, anode-electrocoagulation and chemical coagulation using polymer-flooding sewage.
    Chen YM; Jiang WM; Liu Y; Kang Y
    Chemosphere; 2020 Jul; 250():126128. PubMed ID: 32088613
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes.
    Zhu J; Wu F; Pan X; Guo J; Wens D
    J Environ Sci (China); 2011; 23(7):1066-71. PubMed ID: 22125897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation.
    Danial R; Sobri S; Abdullah LC; Mobarekeh MN
    Chemosphere; 2019 Oct; 233():559-569. PubMed ID: 31195261
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The variation of flocs activity during floc breakage and aging, adsorbing phosphate, humic acid and clay particles.
    Wu M; Yu W; Qu J; Gregory J
    Water Res; 2019 May; 155():131-141. PubMed ID: 30844674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The removal of lignin and phenol from paper mill effluents by electrocoagulation.
    Uğurlu M; Gürses A; Doğar C; Yalçin M
    J Environ Manage; 2008 May; 87(3):420-8. PubMed ID: 17360102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrocoagulation of synthetically prepared waters containing high concentration of NOM using iron cast electrodes.
    Yildiz YS; Koparal AS; Irdemez S; Keskinler B
    J Hazard Mater; 2007 Jan; 139(2):373-80. PubMed ID: 16863679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of Fe(II) from tap water by electrocoagulation technique.
    Ghosh D; Solanki H; Purkait MK
    J Hazard Mater; 2008 Jun; 155(1-2):135-43. PubMed ID: 18164128
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of enteromorpha polysaccharides as coagulant aid in the simultaneous removal of CuO nanoparticles and Cu
    Luo Y; Gao B; Yue Q; Li R
    Chemosphere; 2018 Aug; 204():492-500. PubMed ID: 29679870
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of dosing sequence and solution pH on floc properties of the compound bioflocculant-aluminum sulfate dual-coagulant in kaolin-humic acid solution treatment.
    Bo X; Gao B; Peng N; Wang Y; Yue Q; Zhao Y
    Bioresour Technol; 2012 Jun; 113():89-96. PubMed ID: 22197328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimum parameters for humic acid removal and power production by Al-air fuel cell electrocoagulation in synthetic wastewater.
    Wei W; Gong H; Sheng L; Zhou D; Zhu S
    Water Sci Technol; 2022 Jan; 85(1):174-187. PubMed ID: 35050875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Treatment of the baker's yeast wastewater by electrocoagulation.
    Kobya M; Delipinar S
    J Hazard Mater; 2008 Jun; 154(1-3):1133-40. PubMed ID: 18082942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes.
    Kobya M; Demirbas E; Dedeli A; Sensoy MT
    J Hazard Mater; 2010 Jan; 173(1-3):326-34. PubMed ID: 19748183
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast tracking the molecular weight changes of humic substances in coagulation/flocculation processes via fluorescence EEM-PARAFAC.
    Aftab B; Hur J
    Chemosphere; 2017 Jul; 178():317-324. PubMed ID: 28334671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development and application of novel high throughput metal waste chips and foam electrodes for electrocoagulation treatment of graywater.
    Sharaj Sharifi N; Karimi-Jashni A
    Environ Technol; 2023 Jan; 44(4):528-539. PubMed ID: 34479462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.