These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 26439124)
1. A review of the ecohydrology of the Sakumo wetland in Ghana. Nonterah C; Xu Y; Osae S; Akiti TT; Dampare SB Environ Monit Assess; 2015 Nov; 187(11):671. PubMed ID: 26439124 [TBL] [Abstract][Full Text] [Related]
2. Nitrate distribution under the influence of seasonal hydrodynamic changes and human activities in Huixian karst wetland, South China. Chen J; Luo M; Ma R; Zhou H; Zou S; Gan Y J Contam Hydrol; 2020 Oct; 234():103700. PubMed ID: 32861126 [TBL] [Abstract][Full Text] [Related]
3. Hydrogeochemical and health risk assessment in and around a Ramsar-designated wetland, the Ganges River Basin, India: Implications for natural and human interactions. Khan I; Umar R; Izhar S Environ Monit Assess; 2022 Jun; 194(7):483. PubMed ID: 35672610 [TBL] [Abstract][Full Text] [Related]
4. Water quality stress to Amirkalayeh Wetland, Northern Iran. Rahimi M; Zarei M; Keshavarzi B; Golshani R; Zafarani SGG Environ Monit Assess; 2022 Oct; 195(1):49. PubMed ID: 36315252 [TBL] [Abstract][Full Text] [Related]
5. Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. Singh S; Bhardwaj A; Verma VK J Environ Manage; 2020 May; 262():110355. PubMed ID: 32250824 [TBL] [Abstract][Full Text] [Related]
6. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment. Smith A; Tetzlaff D; Gelbrecht J; Kleine L; Soulsby C Sci Total Environ; 2020 Jan; 699():134302. PubMed ID: 31522046 [TBL] [Abstract][Full Text] [Related]
7. Impacts of human-induced environmental change in wetlands on aquatic animals. Sievers M; Hale R; Parris KM; Swearer SE Biol Rev Camb Philos Soc; 2018 Feb; 93(1):529-554. PubMed ID: 28929570 [TBL] [Abstract][Full Text] [Related]
8. Modelling hydrological effects of wetland restoration: a differentiated view. Staes J; Rubarenzya MH; Meire P; Willems P Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997 [TBL] [Abstract][Full Text] [Related]
9. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas. Cusell C; Kooijman A; Fernandez F; van Wirdum G; Geurts JJ; van Loon EE; Kalbitz K; Lamers LP Sci Total Environ; 2014 May; 481():129-41. PubMed ID: 24594742 [TBL] [Abstract][Full Text] [Related]
10. Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site. Rhymes J; Jones L; Lapworth DJ; White D; Fenner N; McDonald JE; Perkins TL Sci Total Environ; 2015 Apr; 511():703-10. PubMed ID: 25616189 [TBL] [Abstract][Full Text] [Related]
11. Biological and chemical evaluation of sewage water pollution in the Rietvlei nature reserve wetland area, South Africa. Oberholster PJ; Botha AM; Cloete TE Environ Pollut; 2008 Nov; 156(1):184-92. PubMed ID: 18280017 [TBL] [Abstract][Full Text] [Related]
13. Synergistic effects of precipitation and groundwater extraction on freshwater wetland inundation. Balerna JA; Kramer AM; Landry SM; Rains MC; Lewis DB J Environ Manage; 2023 Jul; 337():117690. PubMed ID: 36933535 [TBL] [Abstract][Full Text] [Related]
14. Quantifying area changes of internationally important wetlands due to water consumption in LCA. Verones F; Pfister S; Hellweg S Environ Sci Technol; 2013 Sep; 47(17):9799-807. PubMed ID: 23930946 [TBL] [Abstract][Full Text] [Related]
15. Nutrient attenuation by a riparian wetland during natural and artificial runoff events. Casey RE; Klaine SJ J Environ Qual; 2001; 30(5):1720-31. PubMed ID: 11577881 [TBL] [Abstract][Full Text] [Related]
16. Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru. Verones F; Bartl K; Pfister S; Jiménez Vílchez R; Hellweg S Environ Sci Technol; 2012 May; 46(9):4966-74. PubMed ID: 22463711 [TBL] [Abstract][Full Text] [Related]
17. Impact of current anthropogenic activities on Blesbokspruit wetland microbiome and functions. Koloti LE; Nkuna R; Matambo TS Sci Total Environ; 2024 Mar; 915():170010. PubMed ID: 38219994 [TBL] [Abstract][Full Text] [Related]
18. Drivers of land use/cover change and its impact on Pong Dam wetland. Malik M; Rai SC Environ Monit Assess; 2019 Mar; 191(4):203. PubMed ID: 30834470 [TBL] [Abstract][Full Text] [Related]
19. National-Level Wetland Policy Specificity and Goals Vary According to Political and Economic Indicators. Peimer AW; Krzywicka AE; Cohen DB; Van den Bosch K; Buxton VL; Stevenson NA; Matthews JW Environ Manage; 2017 Jan; 59(1):141-153. PubMed ID: 27624708 [TBL] [Abstract][Full Text] [Related]
20. The concentrations of five heavy metals in components of an economically important urban coastal wetland in Ghana: public health and phytoremediation implications. Gbogbo F; Otoo SD Environ Monit Assess; 2015 Oct; 187(10):655. PubMed ID: 26423633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]