These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 26439516)
1. QSAR model for predicting cell viability of human embryonic kidney cells exposed to SiO₂ nanoparticles. Manganelli S; Leone C; Toropov AA; Toropova AP; Benfenati E Chemosphere; 2016 Feb; 144():995-1001. PubMed ID: 26439516 [TBL] [Abstract][Full Text] [Related]
2. Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells. Manganelli S; Benfenati E Methods Mol Biol; 2017; 1601():275-290. PubMed ID: 28470534 [TBL] [Abstract][Full Text] [Related]
3. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data. Toropova AP; Toropov AA J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422 [TBL] [Abstract][Full Text] [Related]
4. A quasi-QSPR modelling for the photocatalytic decolourization rate constants and cellular viability (CV%) of nanoparticles by CORAL. Toropova AP; Toropov AA; Benfenati E SAR QSAR Environ Res; 2015; 26(1):29-40. PubMed ID: 25608955 [TBL] [Abstract][Full Text] [Related]
5. Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials. Choi JS; Trinh TX; Yoon TH; Kim J; Byun HG Chemosphere; 2019 Feb; 217():243-249. PubMed ID: 30419378 [TBL] [Abstract][Full Text] [Related]
6. Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Toropov AA; Toropova AP; Benfenati E; Gini G; Puzyn T; Leszczynska D; Leszczynski J Chemosphere; 2012 Nov; 89(9):1098-102. PubMed ID: 22704203 [TBL] [Abstract][Full Text] [Related]
7. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368 [TBL] [Abstract][Full Text] [Related]
8. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Wang F; Gao F; Lan M; Yuan H; Huang Y; Liu J Toxicol In Vitro; 2009 Aug; 23(5):808-15. PubMed ID: 19401228 [TBL] [Abstract][Full Text] [Related]
9. A new synthesis pathway for colloidal silica spheres coated with crystalline titanium oxide and its comparative cyto- and genotoxic study with titanium oxide nanoparticles in rat osteosarcoma (UMR106) cells. Di Virgilio AL; Maisuls I; Kleitz F; Arnal PM J Colloid Interface Sci; 2013 Mar; 394():147-56. PubMed ID: 23261339 [TBL] [Abstract][Full Text] [Related]
11. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. Yu T; Malugin A; Ghandehari H ACS Nano; 2011 Jul; 5(7):5717-28. PubMed ID: 21630682 [TBL] [Abstract][Full Text] [Related]
12. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES. Leone C; Bertuzzi EE; Toropova AP; Toropov AA; Benfenati E Chemosphere; 2018 Nov; 210():52-56. PubMed ID: 29986223 [TBL] [Abstract][Full Text] [Related]
13. Quasi-SMILES-Based Nano-Quantitative Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells. Trinh TX; Choi JS; Jeon H; Byun HG; Yoon TH; Kim J Chem Res Toxicol; 2018 Mar; 31(3):183-190. PubMed ID: 29439565 [TBL] [Abstract][Full Text] [Related]
14. CORAL: QSPR model of water solubility based on local and global SMILES attributes. Toropov AA; Toropova AP; Benfenati E; Gini G; Leszczynska D; Leszczynski J Chemosphere; 2013 Jan; 90(2):877-80. PubMed ID: 22921649 [TBL] [Abstract][Full Text] [Related]
15. SMILES-based QSAR model for arylpiperazines as high-affinity 5-HT(1A) receptor ligands using CORAL. Veselinović AM; Milosavljević JB; Toropov AA; Nikolić GM Eur J Pharm Sci; 2013 Feb; 48(3):532-41. PubMed ID: 23287365 [TBL] [Abstract][Full Text] [Related]
17. CORAL: Monte Carlo Method as a Tool for the Prediction of the Bioconcentration Factor of Industrial Pollutants. Toropova AP; Toropov AA; Martyanov SE; Benfenati E; Gini G; Leszczynska D; Leszczynski J Mol Inform; 2013 Feb; 32(2):145-54. PubMed ID: 27481276 [TBL] [Abstract][Full Text] [Related]
18. CORAL and Nano-QFAR: Quantitative feature - Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co Toropova AP; Toropov AA; Leszczynska D; Leszczynski J Ecotoxicol Environ Saf; 2017 May; 139():404-407. PubMed ID: 28192776 [TBL] [Abstract][Full Text] [Related]
19. Characterization of in vitro genotoxic, cytotoxic and transcriptomic responses following exposures to amorphous silica of different sizes. Decan N; Wu D; Williams A; Bernatchez S; Johnston M; Hill M; Halappanavar S Mutat Res Genet Toxicol Environ Mutagen; 2016 Jan; 796():8-22. PubMed ID: 26778505 [TBL] [Abstract][Full Text] [Related]
20. In vitro toxicity of silica nanoparticles in human lung cancer cells. Lin W; Huang YW; Zhou XD; Ma Y Toxicol Appl Pharmacol; 2006 Dec; 217(3):252-9. PubMed ID: 17112558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]