BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26439731)

  • 1. Molecular and anatomical evidence for the input pathway- and target cell type-dependent regulation of glutamatergic synapses.
    Yamasaki M
    Anat Sci Int; 2016 Jan; 91(1):8-21. PubMed ID: 26439731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus.
    Bashir ZI; Alford S; Davies SN; Randall AD; Collingridge GL
    Nature; 1991 Jan; 349(6305):156-8. PubMed ID: 1846031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of a central glutamatergic synapse.
    Wu G; Malinow R; Cline HT
    Science; 1996 Nov; 274(5289):972-6. PubMed ID: 8875937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-fibrillar beta-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors.
    Shemer I; Holmgren C; Min R; Fülöp L; Zilberter M; Sousa KM; Farkas T; Härtig W; Penke B; Burnashev N; Tanila H; Zilberter Y; Harkany T
    Eur J Neurosci; 2006 Apr; 23(8):2035-47. PubMed ID: 16630051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitatory amino acid receptor-channels in Purkinje cells in thin cerebellar slices.
    Farrant M; Cull-Candy SG
    Proc Biol Sci; 1991 Jun; 244(1311):179-84. PubMed ID: 1679935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus.
    Bekkers JM; Stevens CF
    Nature; 1989 Sep; 341(6239):230-3. PubMed ID: 2571090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of AMPA receptors in synaptic plasticity.
    Sprengel R
    Cell Tissue Res; 2006 Nov; 326(2):447-55. PubMed ID: 16896950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase Cgamma is a signaling molecule required for the developmental speeding of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor kinetics.
    Patten SA; Roy B; Cunningham ME; Stafford JL; Ali DW
    Eur J Neurosci; 2010 May; 31(9):1561-73. PubMed ID: 20525069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kainate receptors are involved in synaptic plasticity.
    Bortolotto ZA; Clarke VR; Delany CM; Parry MC; Smolders I; Vignes M; Ho KH; Miu P; Brinton BT; Fantaske R; Ogden A; Gates M; Ornstein PL; Lodge D; Bleakman D; Collingridge GL
    Nature; 1999 Nov; 402(6759):297-301. PubMed ID: 10580501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors.
    Lissin DV; Gomperts SN; Carroll RC; Christine CW; Kalman D; Kitamura M; Hardy S; Nicoll RA; Malenka RC; von Zastrow M
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7097-102. PubMed ID: 9618545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of AMPA-silent synapses in the neonatal hippocampus.
    Xiao MY; Wasling P; Hanse E; Gustafsson B
    Nat Neurosci; 2004 Mar; 7(3):236-43. PubMed ID: 14966524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials.
    Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM
    Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells.
    Sun L; June Liu S
    J Physiol; 2007 Sep; 583(Pt 2):537-53. PubMed ID: 17584840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic interactions of dopamine D1 and glutamate NMDA receptors in rat hippocampus and prefrontal cortex: involvement of ERK1/2 signaling.
    Sarantis K; Matsokis N; Angelatou F
    Neuroscience; 2009 Nov; 163(4):1135-45. PubMed ID: 19647050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental and activity dependent regulation of ionotropic glutamate receptors at synapses.
    Molnar E; Isaac JT
    ScientificWorldJournal; 2002 Jan; 2():27-47. PubMed ID: 12806037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPA/NMDA cooperativity and integration during a single synaptic event.
    Di Maio V; Ventriglia F; Santillo S
    J Comput Neurosci; 2016 Oct; 41(2):127-42. PubMed ID: 27299885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxiliary subunits assist AMPA-type glutamate receptors.
    Nicoll RA; Tomita S; Bredt DS
    Science; 2006 Mar; 311(5765):1253-6. PubMed ID: 16513974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking.
    Bergersen LH; Magistretti PJ; Pellerin L
    Cereb Cortex; 2005 Apr; 15(4):361-70. PubMed ID: 15749979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.