These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 26439799)

  • 1. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.
    Kannurpatti SS; Sanganahalli BG; Herman P; Hyder F
    NMR Biomed; 2015 Nov; 28(11):1579-88. PubMed ID: 26439799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial functional state impacts spontaneous neocortical activity and resting state FMRI.
    Sanganahalli BG; Herman P; Hyder F; Kannurpatti SS
    PLoS One; 2013; 8(5):e63317. PubMed ID: 23650561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of functional connectivity in the resting mouse brain.
    Nasrallah FA; Tay HC; Chuang KH
    Neuroimage; 2014 Feb; 86():417-24. PubMed ID: 24157920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
    Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A
    Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.
    Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N
    J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.
    Gopinath K; Krishnamurthy V; Cabanban R; Crosson BA
    Brain Connect; 2015 Jun; 5(5):267-75. PubMed ID: 25744222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound.
    Hikishima K; Tsurugizawa T; Kasahara K; Takagi R; Yoshinaka K; Nitta N
    Neuroimage; 2023 Oct; 279():120297. PubMed ID: 37500027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial calcium uptake capacity modulates neocortical excitability.
    Sanganahalli BG; Herman P; Hyder F; Kannurpatti SS
    J Cereb Blood Flow Metab; 2013 Jul; 33(7):1115-26. PubMed ID: 23591650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-state dependent astrocytic Ca
    Wang M; He Y; Sejnowski TJ; Yu X
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1647-E1656. PubMed ID: 29382752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kaempferol Treatment after Traumatic Brain Injury during Early Development Mitigates Brain Parenchymal Microstructure and Neural Functional Connectivity Deterioration at Adolescence.
    Parent M; Chitturi J; Santhakumar V; Hyder F; Sanganahalli BG; Kannurpatti SS
    J Neurotrauma; 2020 Apr; 37(7):966-974. PubMed ID: 31830867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.
    Li Z; Vidorreta M; Katchmar N; Alsop DC; Wolf DH; Detre JA
    Neuroimage; 2018 Jun; 173():165-175. PubMed ID: 29454933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat.
    Zhao F; Zhao T; Zhou L; Wu Q; Hu X
    Neuroimage; 2008 Jan; 39(1):248-60. PubMed ID: 17904868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.