BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26439940)

  • 21. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release.
    Zhang P; Ren L; Zhang X; Shan Y; Wang Y; Ji Y; Yin H; Huang WE; Xu J; Ma B
    Anal Chem; 2015 Feb; 87(4):2282-9. PubMed ID: 25607599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices.
    Chen H; Sun J; Wolvetang E; Cooper-White J
    Lab Chip; 2015 Feb; 15(4):1072-83. PubMed ID: 25519528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells.
    Burger R; Kurzbuch D; Gorkin R; Kijanka G; Glynn M; McDonagh C; Ducrée J
    Lab Chip; 2015 Jan; 15(2):378-81. PubMed ID: 25407668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.
    Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ
    Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inverted open microwells for cell trapping, cell aggregate formation and parallel recovery of live cells.
    Bocchi M; Rambelli L; Faenza A; Giulianelli L; Pecorari N; Duqi E; Gallois JC; Guerrieri R
    Lab Chip; 2012 Sep; 12(17):3168-76. PubMed ID: 22767321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring.
    Ameri SK; Singh PK; Dokmeci MR; Khademhosseini A; Xu Q; Sonkusale SR
    Biosens Bioelectron; 2014 Apr; 54():462-7. PubMed ID: 24315878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device.
    Liu W; Li L; Wang JC; Tu Q; Ren L; Wang Y; Wang J
    Lab Chip; 2012 May; 12(9):1702-9. PubMed ID: 22430256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of microstructures on a dielectrophoretic chip for trapping particles.
    Chuang CH; Hsu YM; Wei CH
    Electrophoresis; 2009 Sep; 30(17):3044-3052. PubMed ID: 19676085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new design for efficient dielectrophoretic separation of cells in a microdevice.
    Jubery TZ; Dutta P
    Electrophoresis; 2013 Mar; 34(5):643-50. PubMed ID: 23255020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An electroactive microwell array device to realize simultaneous trapping of single cancer cells and clusters.
    Park J; Park C; Sugitani Y; Fujii T; Kim SH
    Lab Chip; 2022 Aug; 22(16):3000-3007. PubMed ID: 35730687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells.
    Zhu Z; Frey O; Ottoz DS; Rudolf F; Hierlemann A
    Lab Chip; 2012 Mar; 12(5):906-15. PubMed ID: 22193373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfabricated platform for studying stem cell fates.
    Chin VI; Taupin P; Sanga S; Scheel J; Gage FH; Bhatia SN
    Biotechnol Bioeng; 2004 Nov; 88(3):399-415. PubMed ID: 15486946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation.
    Breukers J; Horta S; Struyfs C; Spasic D; Feys HB; Geukens N; Thevissen K; Cammue BPA; Vanhoorelbeke K; Lammertyn J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2316-2326. PubMed ID: 33411502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a microfluidic strategy for trapping and screening single cells.
    Occhetta P; Licini M; Redaelli A; Rasponi M
    Med Eng Phys; 2016 Jan; 38(1):33-40. PubMed ID: 26651214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-seeding microwell chip for the isolation and characterization of single cells.
    Swennenhuis JF; Tibbe AG; Stevens M; Katika MR; van Dalum J; Tong HD; van Rijn CJ; Terstappen LW
    Lab Chip; 2015 Jul; 15(14):3039-46. PubMed ID: 26082273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective Trapping and Retrieval of Single Cells Using Microwell Array Devices Combined with Dielectrophoresis.
    Hata M; Suzuki M; Yasukawa T
    Anal Sci; 2021 Jun; 37(6):803-806. PubMed ID: 33952862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device.
    Jakobsson O; Oh SS; Antfolk M; Eisenstein M; Laurell T; Soh HT
    Anal Chem; 2015 Aug; 87(16):8497-502. PubMed ID: 26226316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.