BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26439961)

  • 1. Experimental autoimmune encephalomyelitis and age-related correlations of NADPH oxidase, MMP-9, and cell adhesion molecules: The increased disease severity and blood-brain barrier permeability in middle-aged mice.
    Seo JE; Hasan M; Han JS; Kang MJ; Jung BH; Kwok SK; Kim HY; Kwon OS
    J Neuroimmunol; 2015 Oct; 287():43-53. PubMed ID: 26439961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A leading role for NADPH oxidase in an in-vitro study of experimental autoimmune encephalomyelitis.
    Seo JE; Hasan M; Rahaman KA; Kang MJ; Jung BH; Kwon OS
    Mol Immunol; 2016 Apr; 72():19-27. PubMed ID: 26928315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice.
    Choi BY; Kim JH; Kho AR; Kim IY; Lee SH; Lee BE; Choi E; Sohn M; Stevenson M; Chung TN; Kauppinen TM; Suh SW
    J Neuroinflammation; 2015 May; 12():104. PubMed ID: 26017142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and activation of matrix metalloproteinase-9 and NADPH oxidase in tissues and plasma of experimental autoimmune encephalomyelitis in mice.
    Kandagaddala LD; Kang MJ; Chung BC; Patterson TA; Kwon OS
    Exp Toxicol Pathol; 2012 Jan; 64(1-2):109-14. PubMed ID: 20810258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis.
    Fiander MD; Stifani N; Nichols M; Akay T; Robertson GS
    Behav Brain Res; 2017 Jan; 317():95-108. PubMed ID: 27639322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE.
    Bennett J; Basivireddy J; Kollar A; Biron KE; Reickmann P; Jefferies WA; McQuaid S
    J Neuroimmunol; 2010 Dec; 229(1-2):180-91. PubMed ID: 20832870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE).
    Benson CA; Wong G; Tenorio G; Baker GB; Kerr BJ
    Behav Brain Res; 2013 Sep; 252():302-11. PubMed ID: 23777648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice.
    Huang Q; Ma X; Zhu DL; Chen L; Jiang Y; Zhou L; Cen L; Pi R; Chen X
    J Neuroimmunol; 2015 Jul; 284():67-73. PubMed ID: 26025060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keratan sulfate exacerbates experimental autoimmune encephalomyelitis.
    Ueno R; Miyamoto K; Tanaka N; Moriguchi K; Kadomatsu K; Kusunoki S
    J Neurosci Res; 2015 Dec; 93(12):1874-80. PubMed ID: 26340909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Induction of Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice.
    Contarini G; Giusti P; Skaper SD
    Methods Mol Biol; 2018; 1727():353-360. PubMed ID: 29222794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Induction of Experimental Autoimmune Encephalomyelitis (EAE) with MOG
    Giralt M; Molinero A; Hidalgo J
    Methods Mol Biol; 2018; 1791():227-232. PubMed ID: 30006713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of orexin-A in experimental autoimmune encephalomyelitis.
    Fatemi I; Shamsizadeh A; Ayoobi F; Taghipour Z; Sanati MH; Roohbakhsh A; Motevalian M
    J Neuroimmunol; 2016 Feb; 291():101-9. PubMed ID: 26857503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The blood-brain barrier-permeable catechol-O-methyltransferase inhibitor dinitrocatechol suppresses experimental autoimmune encephalomyelitis.
    Polak PE; Lin SX; Pelligrino D; Feinstein DL
    J Neuroimmunol; 2014 Nov; 276(1-2):135-41. PubMed ID: 25242632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis.
    Zheng H; Zhang H; Liu F; Qi Y; Jiang H
    Immunol Lett; 2014; 157(1-2):38-44. PubMed ID: 24220208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HMGB1 expression patterns during the progression of experimental autoimmune encephalomyelitis.
    Sun Y; Chen H; Dai J; Zou H; Gao M; Wu H; Ming B; Lai L; Xiao Y; Xiong P; Xu Y; Gong F; Zheng F
    J Neuroimmunol; 2015 Mar; 280():29-35. PubMed ID: 25773152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential brain and spinal cord cytokine and BDNF levels in experimental autoimmune encephalomyelitis are modulated by prior and regular exercise.
    Bernardes D; Oliveira-Lima OC; Silva TV; Faraco CC; Leite HR; Juliano MA; Santos DM; Bethea JR; Brambilla R; Orian JM; Arantes RM; Carvalho-Tavares J
    J Neuroimmunol; 2013 Nov; 264(1-2):24-34. PubMed ID: 24054000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in nociceptive sensitivity and object recognition in experimental autoimmune encephalomyelitis (EAE).
    Olechowski CJ; Tenorio G; Sauve Y; Kerr BJ
    Exp Neurol; 2013 Mar; 241():113-21. PubMed ID: 23291347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased levels of brain serotonin correlated with MMP-9 activity and IL-4 levels resulted in severe experimental autoimmune encephalomyelitis (EAE) in obese mice.
    Hasan M; Seo JE; Rahaman KA; Kang MJ; Jung BH; Kwon OS
    Neuroscience; 2016 Apr; 319():168-82. PubMed ID: 26820599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro screening of NADPH oxidase inhibitors and in vivo effects of L-leucinethiol on experimental autoimmune encephalomyelitis-induced mice.
    Kandagaddala LD; Kang MJ; Haque MM; Im HY; Seo JE; Chung BC; Jung BH; Patterson TA; Kwon OS
    J Neurol Sci; 2012 Jul; 318(1-2):36-44. PubMed ID: 22554692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic exercise confers neuroprotection in experimental autoimmune encephalomyelitis.
    Pryor WM; Freeman KG; Larson RD; Edwards GL; White LJ
    J Neurosci Res; 2015 May; 93(5):697-706. PubMed ID: 25510644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.