These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 26440202)

  • 1. Switchable Bioelectrocatalysis Controlled by Dual Stimuli-Responsive Polymeric Interface.
    Parlak O; Ashaduzzaman M; Kollipara SB; Tiwari A; Turner AP
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23837-47. PubMed ID: 26440202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimuli-enabled zipper-like graphene interface for auto-switchable bioelectronics.
    Mishra S; Ashaduzzaman M; Mishra P; Swart HC; Turner APF; Tiwari A
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):305-311. PubMed ID: 27132998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple stimuli-switchable bioelectrocatalysis under physiological conditions based on copolymer films with entrapped enzyme.
    Wang P; Liu S; Liu H
    J Phys Chem B; 2014 Jun; 118(24):6653-61. PubMed ID: 24874300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "On-off" switchable bioelectrocatalysis synergistically controlled by temperature and sodium sulfate concentration based on poly(N-isopropylacrylamide) films.
    Song S; Hu N
    J Phys Chem B; 2010 May; 114(17):5940-5. PubMed ID: 20380365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition.
    Yao H; Gan Q; Peng J; Huang S; Zhu M; Shi K
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27104542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo- and sulfate-controllable bioelectrocatalysis of glucose based on horseradish peroxidase and glucose oxidase embedded in poly(N,N-diethylacrylamide) hydrogel films.
    Yao H; Lin L; Wang P; Liu H
    Appl Biochem Biotechnol; 2014 Aug; 173(8):2005-18. PubMed ID: 24888410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes.
    Yu X; Lian W; Zhang J; Liu H
    Biosens Bioelectron; 2016 Jun; 80():631-639. PubMed ID: 26901460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triply responsive films in bioelectrocatalysis with a binary architecture: combined layer-by-layer assembly and hydrogel polymerization.
    Yao H; Hu N
    J Phys Chem B; 2011 May; 115(20):6691-9. PubMed ID: 21534632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-Controllable on-off bioelectrocatalysis of bienzyme layer-by-layer films assembled by concanavalin A and glucoenzymes with an electroactive mediator.
    Yao H; Hu N
    J Phys Chem B; 2010 Aug; 114(30):9926-33. PubMed ID: 20617850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host-guest chemistry at interface for photoswitchable bioelectrocatalysis.
    Wan P; Xing Y; Chen Y; Chi L; Zhang X
    Chem Commun (Camb); 2011 Jun; 47(21):5994-6. PubMed ID: 21509391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-switchable bioelectrocatalysis synergistically controlled by pH and perchlorate concentration based on poly(4-vinylpyridine) films.
    Song S; Hu N
    J Phys Chem B; 2010 Sep; 114(35):11689-95. PubMed ID: 20707321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New carbosilane polymers with interacting ferrocenes as support and bioelectrocatalysts of oxidases to develop versatile and specific amperometric biodevices.
    Armada MP; Jiménez A; Losada J; Alonso B; Casado CM
    Appl Biochem Biotechnol; 2012 Dec; 168(7):1778-91. PubMed ID: 22971836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Logic gate system with three outputs and three inputs based on switchable electrocatalysis of glucose by glucose oxidase entrapped in chitosan films.
    Liu S; Wang L; Lian W; Liu H; Li CZ
    Chem Asian J; 2015 Jan; 10(1):225-30. PubMed ID: 25294275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemically controlled bioelectrocatalytic interface.
    Tam TK; Zhou J; Pita M; Ornatska M; Minko S; Katz E
    J Am Chem Soc; 2008 Aug; 130(33):10888-9. PubMed ID: 18651735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A complicated biocomputing system based on multi-responsive P(NIPAM-co-APBA) copolymer film electrodes and electrocatalysis of NADH.
    Liang J; Yu X; Yang T; Li M; Shen L; Jin Y; Liu H
    Phys Chem Chem Phys; 2017 Aug; 19(33):22472-22481. PubMed ID: 28808714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring Biointerfaces for Electrocatalysis.
    Milton RD; Wang T; Knoche KL; Minteer SD
    Langmuir; 2016 Mar; 32(10):2291-301. PubMed ID: 26898265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual magnetobiochemical logic control of electrochemical processes based on local interfacial pH changes.
    Pita M; Tam TK; Minko S; Katz E
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1166-8. PubMed ID: 20355908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics.
    Privman M; Tam TK; Pita M; Katz E
    J Am Chem Soc; 2009 Jan; 131(3):1314-21. PubMed ID: 19113843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytical properties of polymethylferrocenyl dendrimers and their applications in biosensing.
    Armada MP; Losada J; Zamora M; Alonso B; Cuadrado I; Casado CM
    Bioelectrochemistry; 2006 Sep; 69(1):65-73. PubMed ID: 16443400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli responsive polymers for nanoengineering of biointerfaces.
    Zapotoczny S
    Methods Mol Biol; 2012; 811():51-78. PubMed ID: 22042672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.