These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 2644045)
1. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cherry JR; Johnson TR; Dollard C; Shuster JR; Denis CL Cell; 1989 Feb; 56(3):409-19. PubMed ID: 2644045 [TBL] [Abstract][Full Text] [Related]
2. ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Denis CL; Fontaine SC; Chase D; Kemp BE; Bemis LT Mol Cell Biol; 1992 Apr; 12(4):1507-14. PubMed ID: 1549108 [TBL] [Abstract][Full Text] [Related]
3. cAMP-dependent phosphorylation and inactivation of yeast transcription factor ADR1 does not affect DNA binding. Taylor WE; Young ET Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4098-102. PubMed ID: 2161531 [TBL] [Abstract][Full Text] [Related]
4. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Dombek KM; Camier S; Young ET Mol Cell Biol; 1993 Jul; 13(7):4391-9. PubMed ID: 8321238 [TBL] [Abstract][Full Text] [Related]
5. Identification of functional regions in the yeast transcriptional activator ADR1. Bemis LT; Denis CL Mol Cell Biol; 1988 May; 8(5):2125-31. PubMed ID: 3290650 [TBL] [Abstract][Full Text] [Related]
6. The CCR1 (SNF1) and SCH9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator ADR1 in controlling yeast ADH2 expression. Denis CL; Audino DC Mol Gen Genet; 1991 Oct; 229(3):395-9. PubMed ID: 1944227 [TBL] [Abstract][Full Text] [Related]
7. Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1. Dombek KM; Young ET Mol Cell Biol; 1997 Mar; 17(3):1450-8. PubMed ID: 9032272 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression. Young ET; Saario J; Kacherovsky N; Chao A; Sloan JS; Dombek KM J Biol Chem; 1998 Nov; 273(48):32080-7. PubMed ID: 9822683 [TBL] [Abstract][Full Text] [Related]
9. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Vallari RC; Cook WJ; Audino DC; Morgan MJ; Jensen DE; Laudano AP; Denis CL Mol Cell Biol; 1992 Apr; 12(4):1663-73. PubMed ID: 1549119 [TBL] [Abstract][Full Text] [Related]
10. Identification of three genes required for the glucose-dependent transcription of the yeast transcriptional activator ADR1. Cook WJ; Denis CL Curr Genet; 1993 Mar; 23(3):192-200. PubMed ID: 8435848 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the adr1-1 nonsense mutation identifies the translational start of the yeast transcriptional activator ADR1. Bemis LT; Denis CL Yeast; 1989; 5(4):291-8. PubMed ID: 2675489 [TBL] [Abstract][Full Text] [Related]
12. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Walther K; Schüller HJ Microbiology (Reading); 2001 Aug; 147(Pt 8):2037-2044. PubMed ID: 11495982 [TBL] [Abstract][Full Text] [Related]
13. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Cook WJ; Chase D; Audino DC; Denis CL Mol Cell Biol; 1994 Jan; 14(1):629-40. PubMed ID: 8264631 [TBL] [Abstract][Full Text] [Related]
14. Localization of a minimal binding domain and activation regions in yeast regulatory protein ADR1. Thukral SK; Tavianini MA; Blumberg H; Young ET Mol Cell Biol; 1989 Jun; 9(6):2360-9. PubMed ID: 2503705 [TBL] [Abstract][Full Text] [Related]
15. A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids. Simon MM; Pavlik P; Hartig A; Binder M; Ruis H; Cook WJ; Denis CL; Schanz B Mol Gen Genet; 1995 Nov; 249(3):289-96. PubMed ID: 7500953 [TBL] [Abstract][Full Text] [Related]
16. Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation. Cook WJ; Mosley SP; Audino DC; Mullaney DL; Rovelli A; Stewart G; Denis CL J Biol Chem; 1994 Mar; 269(12):9374-9. PubMed ID: 8132676 [TBL] [Abstract][Full Text] [Related]
17. Regulation of expression and activity of the yeast transcription factor ADR1. Blumberg H; Hartshorne TA; Young ET Mol Cell Biol; 1988 May; 8(5):1868-76. PubMed ID: 3290644 [TBL] [Abstract][Full Text] [Related]
18. Adjacent upstream activation sequence elements synergistically regulate transcription of ADH2 in Saccharomyces cerevisiae. Yu J; Donoviel MS; Young ET Mol Cell Biol; 1989 Jan; 9(1):34-42. PubMed ID: 2648133 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of the yeast transcriptional activator ADR1 induces mutation of the mitochondrial genome. Cherry JR; Denis CL Curr Genet; 1989 May; 15(5):311-7. PubMed ID: 2676204 [TBL] [Abstract][Full Text] [Related]
20. Snf1 controls the activity of adr1 through dephosphorylation of Ser230. Ratnakumar S; Kacherovsky N; Arms E; Young ET Genetics; 2009 Jul; 182(3):735-45. PubMed ID: 19398770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]