These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26440452)
61. High-spin ground states via electron delocalization in mixed-valence imidazolate-bridged divanadium complexes. Bechlars B; D'Alessandro DM; Jenkins DM; Iavarone AT; Glover SD; Kubiak CP; Long JR Nat Chem; 2010 May; 2(5):362-8. PubMed ID: 20414235 [TBL] [Abstract][Full Text] [Related]
62. Origin of the Unusual Ground-State Spin Rubín J; Arauzo A; Bartolomé E; Sedona F; Rancan M; Armelao L; Luzón J; Guidi T; Garlatti E; Wilhelm F; Rogalev A; Amann A; Spagna S; Bartolomé J; Bartolomé F J Am Chem Soc; 2022 Jul; 144(27):12520-12535. PubMed ID: 35759747 [TBL] [Abstract][Full Text] [Related]
63. Variation of the ground spin state in homo- and hetero-octanuclear copper(II) and nickel(II) double-star complexes with a meso-helicate-type metallacryptand core. Pardo E; Dul MC; Lescouëzec R; Chamoreau LM; Journaux Y; Pasán J; Ruiz-Pérez C; Julve M; Lloret F; Ruiz-García R; Cano J Dalton Trans; 2010 May; 39(20):4786-801. PubMed ID: 21491690 [TBL] [Abstract][Full Text] [Related]
64. High-Spin Iron(VI), Low-Spin Ruthenium(VI), and Magnetically Bistable Osmium(VI) in Molecular Group 8 Nitrido Trifluorides NMF Stüker T; Xia X; Beckers H; Riedel S Chemistry; 2021 Aug; 27(45):11693-11700. PubMed ID: 34043842 [TBL] [Abstract][Full Text] [Related]
65. Electron spin-lattice relaxation rates for high-spin Fe(III) complexes in glassy solvents at temperatures between 6 and 298 K. Zhou Y; Bowler BE; Eaton GR; Eaton SS J Magn Reson; 2000 May; 144(1):115-22. PubMed ID: 10783280 [TBL] [Abstract][Full Text] [Related]
67. EPR spectroscopy of [Fe2O2(5-Et3-TPA)2]3+: electronic origin of the unique spin-Hamiltonian parameters of the Fe2(III,IV)O2 diamond core. Skulan AJ; Hanson MA; Hsu HF; Dong Y; Que L; Solomon EI Inorg Chem; 2003 Oct; 42(20):6489-96. PubMed ID: 14514326 [TBL] [Abstract][Full Text] [Related]
68. Hyperfine interactions and electron distribution in Fe(II)Fe (I) and Fe (I)Fe (I) models for the active site of the [FeFe] hydrogenases: Mössbauer spectroscopy studies of low-spin Fe(I.). Stoian SA; Hsieh CH; Singleton ML; Casuras AF; Darensbourg MY; McNeely K; Sweely K; Popescu CV J Biol Inorg Chem; 2013 Aug; 18(6):609-22. PubMed ID: 23700296 [TBL] [Abstract][Full Text] [Related]
69. Magnetic behavior and ground spin states for coordination {L·[M Mikhailenko MV; Ivanov VV; Shestakov AF; Kuzmin AV; Khasanov SS; Otsuka A; Yamochi H; Kitagawa H; Konarev DV Dalton Trans; 2023 Aug; 52(32):11222-11233. PubMed ID: 37525575 [TBL] [Abstract][Full Text] [Related]
70. [Fe(IV)═O(TBC)(CH3CN)]2+: comparative reactivity of iron(IV)-oxo species with constrained equatorial cyclam ligation. Wilson SA; Chen J; Hong S; Lee YM; Clémancey M; Garcia-Serres R; Nomura T; Ogura T; Latour JM; Hedman B; Hodgson KO; Nam W; Solomon EI J Am Chem Soc; 2012 Jul; 134(28):11791-806. PubMed ID: 22708532 [TBL] [Abstract][Full Text] [Related]
71. Interplay of spin-dependent delocalization and magnetic anisotropy in the ground and excited states of [Gd Mansikkamäki A; Popov AA; Deng Q; Iwahara N; Chibotaru LF J Chem Phys; 2017 Sep; 147(12):124305. PubMed ID: 28964020 [TBL] [Abstract][Full Text] [Related]
72. Accessibility and selective stabilization of the principal spin states of iron by pyridyl versus phenolic ketimines: modulation of the 6A1 ↔ 2T2 ground-state transformation of the [FeN4O2]+ chromophore. Shongwe MS; Al-Zaabi UA; Al-Mjeni F; Eribal CS; Sinn E; Al-Omari IA; Hamdeh HH; Matoga D; Adams H; Morris MJ; Rheingold AL; Bill E; Sellmyer DJ Inorg Chem; 2012 Aug; 51(15):8241-53. PubMed ID: 22808945 [TBL] [Abstract][Full Text] [Related]
73. Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians. Ghassemi Tabrizi S; Arbuznikov AV; Kaupp M Chemistry; 2018 Mar; 24(18):4689-4702. PubMed ID: 29345739 [TBL] [Abstract][Full Text] [Related]
74. New family of ferric spin clusters incorporating redox-active ortho-dioxolene ligands. Mulyana Y; Nafady A; Mukherjee A; Bircher R; Moubaraki B; Murray KS; Bond AM; Abrahams BF; Boskovic C Inorg Chem; 2009 Aug; 48(16):7765-81. PubMed ID: 19594116 [TBL] [Abstract][Full Text] [Related]
75. Orbital disproportionation and spin crossover as a pseudo Jahn-Teller effect. Garcia-Fernandez P; Bersuker IB; Boggs JE J Chem Phys; 2006 Sep; 125(10):104102. PubMed ID: 16999510 [TBL] [Abstract][Full Text] [Related]
76. Detailed ab initio first-principles study of the magnetic anisotropy in a family of trigonal pyramidal iron(II) pyrrolide complexes. Atanasov M; Ganyushin D; Pantazis DA; Sivalingam K; Neese F Inorg Chem; 2011 Aug; 50(16):7460-77. PubMed ID: 21744845 [TBL] [Abstract][Full Text] [Related]
77. [((H)L)2Fe6(NCMe)m]n+ (m = 0, 2, 4, 6; n = -1, 0, 1, 2, 3, 4, 6): an electron-transfer series featuring octahedral Fe6 clusters supported by a hexaamide ligand platform. Zhao Q; Harris TD; Betley TA J Am Chem Soc; 2011 Jun; 133(21):8293-306. PubMed ID: 21561083 [TBL] [Abstract][Full Text] [Related]
79. Spectroscopic demonstration of a large antisymmetric exchange contribution to the spin-frustrated ground state of a D3 symmetric hydroxy-bridged trinuclear Cu(II) complex: ground-to-excited state superexchange pathways. Yoon J; Mirica LM; Stack TD; Solomon EI J Am Chem Soc; 2004 Oct; 126(39):12586-95. PubMed ID: 15453791 [TBL] [Abstract][Full Text] [Related]
80. Synthesis and Electronic Ground-State Properties of Pyrrolyl-Based Iron Pincer Complexes: Revisited. Ehrlich N; Kreye M; Baabe D; Schweyen P; Freytag M; Jones PG; Walter MD Inorg Chem; 2017 Jul; 56(14):8415-8422. PubMed ID: 28677977 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]