These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 26440586)
1. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. Zhu Y; He X; Mo Y ACS Appl Mater Interfaces; 2015 Oct; 7(42):23685-93. PubMed ID: 26440586 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Wei S; Choudhury S; Tu Z; Zhang K; Archer LA Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617 [TBL] [Abstract][Full Text] [Related]
3. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
4. Li Landgraf V; Famprikis T; de Leeuw J; Bannenberg LJ; Ganapathy S; Wagemaker M ACS Appl Energy Mater; 2023 Feb; 6(3):1661-1672. PubMed ID: 36817749 [TBL] [Abstract][Full Text] [Related]
5. Ionic Conduction through Reaction Products at the Electrolyte-Electrode Interface in All-Solid-State Li Wang C; Aoyagi K; Aykol M; Mueller T ACS Appl Mater Interfaces; 2020 Dec; 12(49):55510-55519. PubMed ID: 33258370 [TBL] [Abstract][Full Text] [Related]
6. Dissecting the Solid Polymer Electrolyte-Electrode Interface in the Vicinity of Electrochemical Stability Limits. Sångeland C; Hernández G; Brandell D; Younesi R; Hahlin M; Mindemark J ACS Appl Mater Interfaces; 2022 Jun; 14(25):28716-28728. PubMed ID: 35708265 [TBL] [Abstract][Full Text] [Related]
7. Combining Superionic Conduction and Favorable Decomposition Products in the Crystalline Lithium-Boron-Sulfur System: A New Mechanism for Stabilizing Solid Li-Ion Electrolytes. Sendek AD; Antoniuk ER; Cubuk ED; Ransom B; Francisco BE; Buettner-Garrett J; Cui Y; Reed EJ ACS Appl Mater Interfaces; 2020 Aug; 12(34):37957-37966. PubMed ID: 32700896 [TBL] [Abstract][Full Text] [Related]
8. Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries. Zhang D; Zhang L; Yang K; Wang H; Yu C; Xu D; Xu B; Wang LM ACS Appl Mater Interfaces; 2017 Oct; 9(42):36886-36896. PubMed ID: 28985458 [TBL] [Abstract][Full Text] [Related]
9. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. Li J; Dudney NJ; Nanda J; Liang C ACS Appl Mater Interfaces; 2014 Jul; 6(13):10083-8. PubMed ID: 24926882 [TBL] [Abstract][Full Text] [Related]
10. First-Principles Insights into Lithium-Rich Ternary Phosphide Superionic Conductors: Solid Electrolytes or Active Electrodes. Min Z; Yang C; Zhong GH; Lu Z ACS Appl Mater Interfaces; 2022 Apr; 14(16):18373-18382. PubMed ID: 35420418 [TBL] [Abstract][Full Text] [Related]
11. Potential Solid-State Electrolytes with Good Balance between Ionic Conductivity and Electrochemical Stability: Li Zhang B; Zhong J; Pan F; Lin Z ACS Appl Mater Interfaces; 2021 Dec; 13(51):61296-61304. PubMed ID: 34905331 [TBL] [Abstract][Full Text] [Related]
12. Guidelines for All-Solid-State Battery Design and Electrode Buffer Layers Based on Chemical Potential Profile Calculation. Nakamura T; Amezawa K; Kulisch J; Zeier WG; Janek J ACS Appl Mater Interfaces; 2019 Jun; 11(22):19968-19976. PubMed ID: 31074256 [TBL] [Abstract][Full Text] [Related]
13. Highly Stable Halide-Electrolyte-Based All-Solid-State Li-Se Batteries. Li X; Liang J; Kim JT; Fu J; Duan H; Chen N; Li R; Zhao S; Wang J; Huang H; Sun X Adv Mater; 2022 May; 34(20):e2200856. PubMed ID: 35365923 [TBL] [Abstract][Full Text] [Related]
14. Solid Electrolyte Lithium Phosphous Oxynitride as a Protective Nanocladding Layer for 3D High-Capacity Conversion Electrodes. Lin CF; Noked M; Kozen AC; Liu C; Zhao O; Gregorczyk K; Hu L; Lee SB; Rubloff GW ACS Nano; 2016 Feb; 10(2):2693-701. PubMed ID: 26820038 [TBL] [Abstract][Full Text] [Related]
15. New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries. Guo Q; Han Y; Wang H; Xiong S; Li Y; Liu S; Xie K ACS Appl Mater Interfaces; 2017 Dec; 9(48):41837-41844. PubMed ID: 29131566 [TBL] [Abstract][Full Text] [Related]
16. Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery. Unemoto A; Chen C; Wang Z; Matsuo M; Ikeshoji T; Orimo S Nanotechnology; 2015 Jan; 26(25):254001. PubMed ID: 26041380 [TBL] [Abstract][Full Text] [Related]
17. Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences. Wang S; Xu H; Li W; Dolocan A; Manthiram A J Am Chem Soc; 2018 Jan; 140(1):250-257. PubMed ID: 29250960 [TBL] [Abstract][Full Text] [Related]
18. Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries. Chun GH; Shim JH; Yu S ACS Appl Mater Interfaces; 2022 Jan; 14(1):1241-1248. PubMed ID: 34951299 [TBL] [Abstract][Full Text] [Related]
19. Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+) Mobility of Li3PS4: Insights from First-Principles Calculations. Yang Y; Wu Q; Cui Y; Chen Y; Shi S; Wang RZ; Yan H ACS Appl Mater Interfaces; 2016 Sep; 8(38):25229-42. PubMed ID: 27588896 [TBL] [Abstract][Full Text] [Related]
20. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Schwietert TK; Arszelewska VA; Wang C; Yu C; Vasileiadis A; de Klerk NJJ; Hageman J; Hupfer T; Kerkamm I; Xu Y; van der Maas E; Kelder EM; Ganapathy S; Wagemaker M Nat Mater; 2020 Apr; 19(4):428-435. PubMed ID: 31932670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]