These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26440747)

  • 1. Different effects of five depigmentary compounds, rhododendrol, raspberry ketone, monobenzone, rucinol and AP736 on melanogenesis and viability of human epidermal melanocytes.
    Lee CS; Joo YH; Baek HS; Park M; Kim JH; Shin HJ; Park NH; Lee JH; Park YH; Shin SS; Lee HK
    Exp Dermatol; 2016 Jan; 25(1):44-9. PubMed ID: 26440747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45.
    Kim M; Baek HS; Lee M; Park H; Shin SS; Choi DW; Lim KM
    Toxicol In Vitro; 2016 Apr; 32():339-46. PubMed ID: 26867644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4-(4-Hydroxyphenyl)-2-butanol (rhododendrol)-induced melanocyte cytotoxicity is enhanced by UVB exposure through generation of oxidative stress.
    Goto N; Tsujimoto M; Nagai H; Masaki T; Ito S; Wakamatsu K; Nishigori C
    Exp Dermatol; 2018 Jul; 27(7):754-762. PubMed ID: 29630780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism.
    Sasaki M; Kondo M; Sato K; Umeda M; Kawabata K; Takahashi Y; Suzuki T; Matsunaga K; Inoue S
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):754-63. PubMed ID: 24890809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (E)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity.
    Ito S; Hinoshita M; Suzuki E; Ojika M; Wakamatsu K
    Chem Res Toxicol; 2017 Mar; 30(3):859-868. PubMed ID: 28219012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3β phosphorylation.
    Shin HJ; Oh CT; Kwon TR; Beak HS; Joo YH; Kim JH; Lee CS; Lee JH; Kim BJ; Shin SS; Park ES
    Int J Mol Med; 2015 Nov; 36(5):1353-60. PubMed ID: 26398893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma.
    Gabe Y; Miyaji A; Kohno M; Hachiya A; Moriwaki S; Baba T
    J Dermatol Sci; 2018 Sep; 91(3):311-316. PubMed ID: 30005897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keratinocyte-derived IL-36γ plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes.
    Pyo JJ; Ahn S; Jin SH; An S; Lee E; Choi J; Shin JC; Choi H; Kim HJ; Choi D; Noh M
    Arch Toxicol; 2019 Aug; 93(8):2307-2320. PubMed ID: 31256213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression.
    Lee CS; Jang WH; Park M; Jung K; Baek HS; Joo YH; Park YH; Lim KM
    Exp Dermatol; 2013 Nov; 22(11):762-4. PubMed ID: 24107097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative Oligomerization of DBL Catechol, a potential Cytotoxic Compound for Melanocytes, Reveals the Occurrence of Novel Ionic Diels-Alder Type Additions.
    Sugumaran M; Umit K; Evans J; Muriph R; Ito S; Wakamatsu K
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32942764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin.
    Abe Y; Okamura K; Kawaguchi M; Hozumi Y; Aoki H; Kunisada T; Ito S; Wakamatsu K; Matsunaga K; Suzuki T
    J Dermatol Sci; 2016 Jan; 81(1):35-43. PubMed ID: 26547111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of melanocytes-specific cytotoxicity induced by phenol compounds having a prooxidant effect, relating to the appearance of leukoderma.
    Nagata T; Ito S; Itoga K; Kanazawa H; Masaki H
    Biomed Res Int; 2015; 2015():479798. PubMed ID: 25861631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents.
    Lee AY; Noh M
    Arch Pharm Res; 2013 Jul; 36(7):792-801. PubMed ID: 23604723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework to mitigate the risk of chemical leukoderma: Consumer products.
    Bjerke DL; Wu S; Wakamatsu K; Ito S; Wang J; Laughlin T; Hakozaki T
    Regul Toxicol Pharmacol; 2022 Jun; 131():105157. PubMed ID: 35292310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potent pro-oxidant activity of rhododendrol-eumelanin is enhanced by ultraviolet A radiation.
    Ito S; Agata M; Okochi K; Wakamatsu K
    Pigment Cell Melanoma Res; 2018 Jul; 31(4):523-528. PubMed ID: 29474003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold.
    Kasamatsu S; Hachiya A; Nakamura S; Yasuda Y; Fujimori T; Takano K; Moriwaki S; Hase T; Suzuki T; Matsunaga K
    J Dermatol Sci; 2014 Oct; 76(1):16-24. PubMed ID: 25082450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unique system that can sensitively assess the risk of chemical leukoderma by using murine tail skin.
    Iida M; Tazaki A; Deng Y; Chen W; Yajima I; Kondo-Ida L; Hashimoto K; Ohgami N; Kato M
    Chemosphere; 2019 Nov; 235():713-718. PubMed ID: 31279121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of CD86 and IL-12 by rhododendrol in THP-1 cells cocultured with melanocytes through ROS and ATP.
    Katahira Y; Sakamoto E; Watanabe A; Furusaka Y; Inoue S; Hasegawa H; Mizoguchi I; Yo K; Yamaji F; Toyoda A; Yoshimoto T
    J Dermatol Sci; 2022 Dec; 108(3):167-177. PubMed ID: 36610941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fluoroquinolones on melanogenesis in normal human melanocytes HEMn-DP: a comparative in vitro study.
    Beberok A; Wrześniok D; Rzepka Z; Rok J; Delijewski M; Otręba M; Respondek M; Buszman E
    Cutan Ocul Toxicol; 2017 Jun; 36(2):169-175. PubMed ID: 27572617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Influence of Cold Plasma on Epidermal Melanogenesis In Situ and In Vitro.
    Hasse S; Sommer MC; Guenther S; Schulze C; Bekeschus S; von Woedtke T
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.