These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26440758)

  • 1. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.
    Ward K; Xi J; Stuckey DC
    Colloids Surf B Biointerfaces; 2015 Dec; 136():424-30. PubMed ID: 26440758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Activity kinetics, conformation, and energetics.
    Ward K; Xi J; Stuckey DC
    Biotechnol Bioeng; 2016 May; 113(5):970-8. PubMed ID: 26497856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Candida cylindracea lipase on colloidal liquid aphrons (CLAs) and development of a continuous CLA-membrane reactor.
    Lye GJ; Pavlou OP; Rosjidi M; Stuckey DC
    Biotechnol Bioeng; 1996 Jul; 51(1):69-78. PubMed ID: 18627089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current applications of Colloidal Liquid Aphrons: Predispersed solvent extraction, enzyme immobilization and drug delivery.
    Ward K; Taylor A; Mohammed A; Stuckey DC
    Adv Colloid Interface Sci; 2020 Jan; 275():102079. PubMed ID: 31787216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme immobilization on colloidal liquid aphrons (CLAs): the influence of system parameters on activity.
    Lamb SB; Stuckey DC
    Enzyme Microb Technol; 2000 May; 26(8):574-581. PubMed ID: 10793204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aphron applications--a review of recent and current research.
    Molaei A; Waters KE
    Adv Colloid Interface Sci; 2015 Feb; 216():36-54. PubMed ID: 25578407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alginate as a support ligand for enhanced colloidal liquid aphron immobilization of proteins and drug delivery.
    Ward K; Cortés JGC; Stuckey D
    Biotechnol Bioeng; 2019 Dec; 116(12):3168-3178. PubMed ID: 31449332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.
    de Souza RL; de Faria EL; Figueiredo RT; Freitas Ldos S; Iglesias M; Mattedi S; Zanin GM; dos Santos OA; Coutinho JA; Lima ÁS; Soares CM
    Enzyme Microb Technol; 2013 Mar; 52(3):141-50. PubMed ID: 23410924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2011 Jan; 27(1):250-63. PubMed ID: 21128607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of lactoferrin and lactoperoxidase from sweet whey using colloidal gas aphrons (CGAs) generated from an anionic surfactant, AOT.
    Fuda E; Jauregi P; Pyle DL
    Biotechnol Prog; 2004; 20(2):514-25. PubMed ID: 15058997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of Candida rugosa lipase on colloidal gas aphrons (CGAs).
    O'Connell PJ; Varley J
    Biotechnol Bioeng; 2001 Aug; 74(3):264-9. PubMed ID: 11400100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physisorption of enzymatically active chymotrypsin on titania colloidal particles.
    Derr L; Dringen R; Treccani L; Hildebrand N; Ciacchi LC; Rezwan K
    J Colloid Interface Sci; 2015 Oct; 455():236-44. PubMed ID: 26072448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilisation and application of lipases in organic media.
    Adlercreutz P
    Chem Soc Rev; 2013 Aug; 42(15):6406-36. PubMed ID: 23403895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refractive index matching to develop transparent polyaphrons: Characterization of immobilized proteins.
    Ward K; Stuckey DC
    Colloids Surf B Biointerfaces; 2016 Jun; 142():159-164. PubMed ID: 26952359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zeta potential measurement as a diagnostic tool in enzyme immobilisation.
    Schultz N; Metreveli G; Franzreb M; Frimmel FH; Syldatk C
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):39-44. PubMed ID: 18583108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An insight into the mechanism of protein separation by colloidal gas aphrons (CGA) generated from ionic surfactants.
    Fuda E; Jauregi P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Nov; 843(2):317-26. PubMed ID: 16891165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-induced changes in the structure and activity of enzymes physically immobilized at solid/liquid interfaces.
    Norde W; Zoungrana T
    Biotechnol Appl Biochem; 1998 Oct; 28(2):133-43. PubMed ID: 9756464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of enzyme immobilization in liposomes prepared from proliposomes.
    Dufour P; Vuillemard JC; Laloy E; Simard RE
    J Microencapsul; 1996; 13(2):185-94. PubMed ID: 8999123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.
    Yan J; Pan G; Li L; Quan G; Ding C; Luo A
    J Colloid Interface Sci; 2010 Aug; 348(2):565-70. PubMed ID: 20621824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.