These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26441148)
21. Functionalization of hydrogen-terminated silicon via surface-initiated atom-transfer radical polymerization and derivatization of the polymer brushes. Xu D; Yu WH; Kang ET; Neoh KG J Colloid Interface Sci; 2004 Nov; 279(1):78-87. PubMed ID: 15380414 [TBL] [Abstract][Full Text] [Related]
22. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) Brushes as Peptide/Protein Microarray Substrate for Improving Protein Binding and Functionality. Lei Z; Gao J; Liu X; Liu D; Wang Z ACS Appl Mater Interfaces; 2016 Apr; 8(16):10174-82. PubMed ID: 27049528 [TBL] [Abstract][Full Text] [Related]
23. Filter paper grafted with epoxide-based copolymer brushes for activation-free peptide nucleic acid conjugation and its application for colorimetric DNA detection. Leekrajang M; Sae-Ung P; Vilaivan T; Hoven VP Colloids Surf B Biointerfaces; 2019 Jan; 173():851-859. PubMed ID: 30551301 [TBL] [Abstract][Full Text] [Related]
24. Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method. Iwata R; Satoh R; Iwasaki Y; Akiyoshi K Colloids Surf B Biointerfaces; 2008 Apr; 62(2):288-98. PubMed ID: 18055186 [TBL] [Abstract][Full Text] [Related]
25. Microarray glass slides coated with block copolymer brushes obtained by reversible addition chain-transfer polymerization. Pirri G; Chiari M; Damin F; Meo A Anal Chem; 2006 May; 78(9):3118-24. PubMed ID: 16643002 [TBL] [Abstract][Full Text] [Related]
26. Bioadhesive control of plasma proteins and blood cells from umbilical cord blood onto the interface grafted with zwitterionic polymer brushes. Chang Y; Chang Y; Higuchi A; Shih YJ; Li PT; Chen WY; Tsai EM; Hsiue GH Langmuir; 2012 Mar; 28(9):4309-17. PubMed ID: 22268580 [TBL] [Abstract][Full Text] [Related]
27. Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: ligand co-presentation and 3D-localization. Desseaux S; Klok HA Biomaterials; 2015 Mar; 44():24-35. PubMed ID: 25617123 [TBL] [Abstract][Full Text] [Related]
28. Direct patterning of intrinsically electron beam sensitive polymer brushes. Rastogi A; Paik MY; Tanaka M; Ober CK ACS Nano; 2010 Feb; 4(2):771-80. PubMed ID: 20121228 [TBL] [Abstract][Full Text] [Related]
29. Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces. Oh YJ; Khan ES; Campo AD; Hinterdorfer P; Li B ACS Appl Mater Interfaces; 2019 Aug; 11(32):29312-29319. PubMed ID: 31259525 [TBL] [Abstract][Full Text] [Related]
30. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
31. High capacity, charge-selective protein uptake by polyelectrolyte brushes. Kusumo A; Bombalski L; Lin Q; Matyjaszewski K; Schneider JW; Tilton RD Langmuir; 2007 Apr; 23(8):4448-54. PubMed ID: 17358090 [TBL] [Abstract][Full Text] [Related]
32. Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Xu FJ; Cai QJ; Li YL; Kang ET; Neoh KG Biomacromolecules; 2005; 6(2):1012-20. PubMed ID: 15762672 [TBL] [Abstract][Full Text] [Related]
33. Temperature-controlled masking/unmasking of cell-adhesive cues with poly(ethylene glycol) methacrylate based brushes. Desseaux S; Klok HA Biomacromolecules; 2014 Oct; 15(10):3859-65. PubMed ID: 25208302 [TBL] [Abstract][Full Text] [Related]
34. Tapping the potential of polymer brushes through synthesis. Li B; Yu B; Ye Q; Zhou F Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476 [TBL] [Abstract][Full Text] [Related]
35. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Jiang H; Wang XB; Li CY; Li JS; Xu FJ; Mao C; Yang WT; Shen J Langmuir; 2011 Sep; 27(18):11575-81. PubMed ID: 21851101 [TBL] [Abstract][Full Text] [Related]
36. Achieving highly effective nonfouling performance for surface-grafted poly(HPMA) via atom-transfer radical polymerization. Zhao C; Li L; Zheng J Langmuir; 2010 Nov; 26(22):17375-82. PubMed ID: 20942427 [TBL] [Abstract][Full Text] [Related]
37. Facile surface immobilization of ATRP initiators on colloidal polymers for grafting brushes and application to colloidal crystals. Liu YY; Chen H; Ishizu K Langmuir; 2011 Feb; 27(3):1168-74. PubMed ID: 21214212 [TBL] [Abstract][Full Text] [Related]
38. Trinity DNA detection platform by ultrasmooth and functionalized PEDOT biointerfaces. Luo SC; Xie H; Chen N; Yu HH ACS Appl Mater Interfaces; 2009 Jul; 1(7):1414-9. PubMed ID: 20355943 [TBL] [Abstract][Full Text] [Related]
39. NHS-ester functionalized poly(PEGMA) brushes on silicon surface for covalent protein immobilization. Yao Y; Ma YZ; Qin M; Ma XJ; Wang C; Feng XZ Colloids Surf B Biointerfaces; 2008 Oct; 66(2):233-9. PubMed ID: 18675539 [TBL] [Abstract][Full Text] [Related]
40. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]