These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 26441218)

  • 21. Remarkably High Thermoelectric Efficiencies of the Half-Heusler Compounds BXGa (X = Be, Mg, and Ca).
    Sun HL; Yang CL; Wang MS; Ma XG
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5838-5846. PubMed ID: 31922710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A systematic first-principles investigation of the structural, electronic, mechanical, optical, and thermodynamic properties of Half-Heusler ANiX (ASc, Ti, Y, Zr, Hf; XBi, Sn) for spintronics and optoelectronics applications.
    Tarekuzzaman M; Ishraq MH; Rahman MA; Irfan A; Rahman MZ; Akter MS; Abedin S; Rayhan MA; Rasheduzzaman M; Hossen MM; Hasan MZ
    J Comput Chem; 2024 Jul; ():. PubMed ID: 38970309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultralow Thermal Conductivity in Full Heusler Semiconductors.
    He J; Amsler M; Xia Y; Naghavi SS; Hegde VI; Hao S; Goedecker S; Ozoliņš V; Wolverton C
    Phys Rev Lett; 2016 Jul; 117(4):046602. PubMed ID: 27494488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal transport properties of antimonene: an ab initio study.
    Wang S; Wang W; Zhao G
    Phys Chem Chem Phys; 2016 Nov; 18(45):31217-31222. PubMed ID: 27819098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon lifetimes from first-principles self-consistent lattice dynamics.
    Souvatzis P
    J Phys Condens Matter; 2011 Nov; 23(44):445401. PubMed ID: 22004848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Half-Heusler Interfacial Structure on Thermal Transport Properties of (Ti, Zr)NiSn Alloys.
    Sato M; Chai YW; Kimura Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25503-25512. PubMed ID: 34009948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation.
    Rausch E; Balke B; Ouardi S; Felser C
    Phys Chem Chem Phys; 2014 Dec; 16(46):25258-62. PubMed ID: 25162747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles.
    Fang T; Zhao X; Zhu T
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29783759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory of thermoelectricity in Mg
    Farris R; Maccioni MB; Filippetti A; Fiorentini V
    J Phys Condens Matter; 2019 Feb; 31(6):065702. PubMed ID: 30524117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ti Addition Effect on the Grain Structure Evolution and Thermoelectric Transport Properties of Hf
    Cho J; Park T; Bae KW; Kim HS; Choi SM; Kim SI; Kim SW
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of isotropic strain on the structure and transport properties of half-Heusler alloy BiBaK: a first-principles investigation.
    Wei J; Guo Y; Wang G
    RSC Adv; 2024 Jan; 14(1):463-477. PubMed ID: 38173595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.
    Berche A; Jund P
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29789503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoelectric and phonon transport properties of two-dimensional IV-VI compounds.
    Shafique A; Shin YH
    Sci Rep; 2017 Mar; 7(1):506. PubMed ID: 28360412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High thermoelectric performance of half-Heusler Zr
    Jiang Q; Wan R; Zhang Z; Lei Y; Tian G
    J Phys Condens Matter; 2021 Sep; 33(46):. PubMed ID: 34404030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoelectric properties of antimony films: roles of oxidation and topological quantum state.
    Zhang T; Chang J; Su W; Zhou XL; Jia X
    Nanotechnology; 2020 Nov; 31(48):485704. PubMed ID: 32931470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX
    Bi S; Sun Z; Yuan K; Chang Z; Zhang X; Gao Y; Tang D
    Phys Chem Chem Phys; 2021 Oct; 23(41):23718-23729. PubMed ID: 34642727
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High thermoelectric performance of half-Heusler compound BiBaK with intrinsically low lattice thermal conductivity.
    Han SH; Zhou ZZ; Sheng CY; Liu JH; Wang L; Yuan HM; Liu HJ
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32624508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Born effective charge removed anomalous temperature dependence of lattice thermal conductivity in monolayer GeC.
    Guo SD; Guo XS; Dong J
    J Phys Condens Matter; 2019 Mar; 31(12):125701. PubMed ID: 30630139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.
    Guo SD; Liu JT
    Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites.
    Elalfy L; Music D; Hu M
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31731398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.