BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2644142)

  • 1. Relative importance of extracellular and intracellular Ca2+ for acetylcholine stimulation of insulin release in mouse islets.
    Hermans MP; Henquin JC
    Diabetes; 1989 Feb; 38(2):198-204. PubMed ID: 2644142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-, calcium- and concentration-dependence of acetylcholine stimulation of insulin release and ionic fluxes in mouse islets.
    Garcia MC; Hermans MP; Henquin JC
    Biochem J; 1988 Aug; 254(1):211-8. PubMed ID: 3052430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscarinic control of pancreatic B cell function involves sodium-dependent depolarization and calcium influx.
    Henquin JC; Garcia MC; Bozem M; Hermans MP; Nenquin M
    Endocrinology; 1988 May; 122(5):2134-42. PubMed ID: 3282876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine.
    Doliba NM; Qin W; Vatamaniuk MZ; Li C; Zelent D; Najafi H; Buettger CW; Collins HW; Carr RD; Magnuson MA; Matschinsky FM
    Am J Physiol Endocrinol Metab; 2004 May; 286(5):E834-43. PubMed ID: 14736703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exogenous arachidonic acid promotes insulin release from intact or permeabilized rat islets by dual mechanisms. Putative activation of Ca2+ mobilization and protein kinase C.
    Metz SA
    Diabetes; 1988 Nov; 37(11):1453-69. PubMed ID: 3141235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of protein kinase-C in signal transduction through vasopressin and acetylcholine receptors in pancreatic B-cells from normal mouse.
    Gao ZY; Gilon P; Henquin JC
    Endocrinology; 1994 Jul; 135(1):191-9. PubMed ID: 8013353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscarinic stimulation exerts both stimulatory and inhibitory effects on the concentration of cytoplasmic Ca2+ in the electrically excitable pancreatic B-cell.
    Gilon P; Nenquin M; Henquin JC
    Biochem J; 1995 Oct; 311 ( Pt 1)(Pt 1):259-67. PubMed ID: 7575463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of cytosolic free Ca2+ and protein kinase C in acetylcholine-induced insulin release in the clonal beta-cell line, HIT-T15.
    Hughes SJ; Chalk JG; Ashcroft SJ
    Biochem J; 1990 Apr; 267(1):227-32. PubMed ID: 2183793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chloride deficiency on the pancreatic B-cell response to acetylcholine.
    Hermans MP; Schmeer W; GĂ©rard M; Henquin JC
    Biochim Biophys Acta; 1991 Apr; 1092(2):205-10. PubMed ID: 2018787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory effect of 1,25-dihydroxyvitamin D3 on insulin release and calcium handling via the phospholipid pathway in islets from vitamin D-deficient rats.
    Billaudel BJ; Bourlon PM; Sutter BC; Faure-Dussert AG
    J Endocrinol Invest; 1995 Oct; 18(9):673-82. PubMed ID: 8719297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the calcium-channel agonist CGP 28392 on insulin secretion from isolated rat islets of Langerhans.
    Morgan NG; Short CD; Rumford GM; Montague W
    Biochem J; 1985 Nov; 231(3):629-34. PubMed ID: 2934056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay of glucose-stimulated Ca2+ sequestration and acetylcholine-induced Ca2+ release at the endoplasmic reticulum in rat pancreatic beta-cells.
    Hamakawa N; Yada T
    Cell Calcium; 1995 Jan; 17(1):21-31. PubMed ID: 7553778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium-induced insulin release does not involve changes in intracellular handling of calcium.
    Nilsson T; Berggren PO; Hellman B
    Biochim Biophys Acta; 1987 Jun; 929(1):81-7. PubMed ID: 3297172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic determinants of D-fructose insulinotropic action.
    Jijakli H; Malaisse WJ
    Acta Diabetol; 2000 Mar; 37(1):27-32. PubMed ID: 10928233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of calcium fluxes in rat pancreatic islets: dissimilar effects of glucose and of sodium ion accumulation.
    Herchuelz A; Malaisse WJ
    J Physiol; 1980 May; 302():263-80. PubMed ID: 6997457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of calcium fluxes in rat pancreatic islets. Quinine mimics the dual effect of glucose on calcium movements.
    Herchuelz A; Lebrun P; Carpinelli A; Thonnart N; Sener A; Malaisse WJ
    Biochim Biophys Acta; 1981 Jan; 640(1):16-30. PubMed ID: 7011391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of the stimulation of insulin release by oxytocin in normal mouse islets.
    Gao ZY; Drews G; Henquin JC
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):169-74. PubMed ID: 1674863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells.
    Hermans MP; Schmeer W; Henquin JC
    Endocrinology; 1987 May; 120(5):1765-73. PubMed ID: 3552623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between magnesium and calcium in beta-cell-rich pancreatic islets.
    Berggren PO; Bergsten P; Gylfe E; Larsson R; Hellman B
    Am J Physiol; 1983 Jun; 244(6):E541-7. PubMed ID: 6344652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of the stimulation of insulin release by arginine-vasopressin in normal mouse islets.
    Gao ZY; Drews G; Nenquin M; Plant TD; Henquin JC
    J Biol Chem; 1990 Sep; 265(26):15724-30. PubMed ID: 2203783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.