These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26441429)

  • 1. Practical Guidelines for Incorporating Knowledge-Based and Data-Driven Strategies into the Inference of Gene Regulatory Networks.
    Hsiao YT; Lee WP; Yang W; Müller S; Flamm C; Hofacker I; Kügler P
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):64-75. PubMed ID: 26441429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse engineering gene regulatory networks: coupling an optimization algorithm with a parameter identification technique.
    Hsiao YT; Lee WP
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S8. PubMed ID: 25474560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.
    Kentzoglanakis K; Poole M
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):358-71. PubMed ID: 21576756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEAK: Integrating Curated and Noisy Prior Knowledge in Gene Regulatory Network Inference.
    Altarawy D; Eid FE; Heath LS
    J Comput Biol; 2017 Sep; 24(9):863-873. PubMed ID: 28294630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse engineering genetic networks using nonlinear saturation kinetics.
    Kizhakkethil Youseph AS; Chetty M; Karmakar G
    Biosystems; 2019 Aug; 182():30-41. PubMed ID: 31185246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.
    Xiao X; Zhang W; Zou X
    PLoS One; 2015; 10(3):e0119294. PubMed ID: 25807392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of gene networks with hybrid approach from expression profile and gene ontology.
    Jing L; Ng MK; Liu Y
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):107-18. PubMed ID: 19789116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data.
    Vu TT; Vohradsky J
    Genomics; 2009 May; 93(5):426-33. PubMed ID: 19442636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using directed information to build biologically relevant influence networks.
    Rao A; Hero AO; States DJ; Engel JD
    Comput Syst Bioinformatics Conf; 2007; 6():145-56. PubMed ID: 17951820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genetic network dynamics with unate structure.
    Porreca R; Cinquemani E; Lygeros J; Ferrari-Trecate G
    Bioinformatics; 2010 May; 26(9):1239-45. PubMed ID: 20305266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropic Biological Score: a cell cycle investigation for GRNs inference.
    Lopes FM; Ray SS; Hashimoto RF; Cesar RM
    Gene; 2014 May; 541(2):129-37. PubMed ID: 24631265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of gene regulatory networks with multi-objective cellular genetic algorithm.
    García-Nieto J; Nebro AJ; Aldana-Montes JF
    Comput Biol Chem; 2019 Jun; 80():409-418. PubMed ID: 31128452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks.
    Zhang X; Zhao J; Hao JK; Zhao XM; Chen L
    Nucleic Acids Res; 2015 Mar; 43(5):e31. PubMed ID: 25539927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growing seed genes from time series data and thresholded Boolean networks with perturbation.
    Higa CH; Andrade TP; Hashimoto RF
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):37-49. PubMed ID: 23702542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale binarization of gene expression data for reconstructing Boolean networks.
    Hopfensitz M; Mussel C; Wawra C; Maucher M; Kuhl M; Neumann H; Kestler HA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):487-98. PubMed ID: 21464514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulatory network identification from the yeast cell cycle based on a neuro-fuzzy system.
    Wang BH; Lim JW; Lim JS
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.
    Hong CC; Song M
    PLoS One; 2010 Feb; 5(2):e9331. PubMed ID: 20195367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.