These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26441461)

  • 1. Vision-Based Human Tracking Control of a Wheeled Inverted Pendulum Robot.
    Ye W; Li Z; Yang C; Sun J; Su CY; Lu R
    IEEE Trans Cybern; 2016 Nov; 46(11):2423-2434. PubMed ID: 26441461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.
    Zhang L; Ahamed T; Zhang Y; Gao P; Takigawa T
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trajectory Planning and Optimized Adaptive Control for a Class of Wheeled Inverted Pendulum Vehicle Models.
    Yang C; Li Z; Li J
    IEEE Trans Cybern; 2013 Feb; 43(1):24-36. PubMed ID: 22695357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network-based motion control of an underactuated wheeled inverted pendulum model.
    Yang C; Li Z; Cui R; Xu B
    IEEE Trans Neural Netw Learn Syst; 2014 Nov; 25(11):2004-16. PubMed ID: 25330424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indoor Autonomous Control of a Two-Wheeled Inverted Pendulum Vehicle Using Ultra Wide Band Technology.
    Xia D; Yao Y; Cheng L
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28617338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ball-Catching System Using Image Processing and an Omni-Directional Wheeled Mobile Robot.
    Kao ST; Ho MT
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and Control of a Wheeled Biped Robot.
    Cui Z; Xin Y; Liu S; Rong X; Li Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Trajectory Tracking of Nonholonomic Mobile Robots Using Vision-Based Position and Velocity Estimation.
    Li L; Liu YH; Jiang T; Wang K; Fang M
    IEEE Trans Cybern; 2018 Feb; 48(2):571-582. PubMed ID: 28092594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Detection and Tracking System for a Spherical Amphibious Robot.
    Guo S; Pan S; Shi L; Guo P; He Y; Tang K
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.
    Dai Y; Kim Y; Wee S; Lee D; Lee S
    ISA Trans; 2015 May; 56():123-34. PubMed ID: 25497595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning.
    Samadi Gharajeh M; Jond HB
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks.
    Alzarok H; Fletcher S; Longstaff AP
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system.
    Dixon WE; Dawson DM; Zergeroglu E; Behal A
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):341-52. PubMed ID: 18244797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive trajectory tracking of wheeled mobile robot based on fixed-time convergence with uncalibrated camera parameters.
    Guo P; Liang Z; Wang X; Zheng M
    ISA Trans; 2020 Apr; 99():1-8. PubMed ID: 31607384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Tracking Control of Wheeled Inverted Pendulums With Periodic Disturbances.
    Sun W; Su SF; Xia J; Wu Y
    IEEE Trans Cybern; 2020 May; 50(5):1867-1876. PubMed ID: 30582561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.
    Hongbo Wang ; Kosuge K
    IEEE Trans Haptics; 2012; 5(3):264-73. PubMed ID: 26964112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Trajectory Planning Method for the Navigation of WIP Vehicles in Unknown Environments: Theory and Experiment.
    Ning Y; Yue M; Shangguan J; Zhao J
    IEEE Trans Cybern; 2023 Oct; 53(10):6317-6328. PubMed ID: 35476556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism.
    Wai RJ; Kuo MA; Lee JD
    IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):439-54. PubMed ID: 18348926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel LiDAR-IMU-Odometer Coupling Framework for Two-Wheeled Inverted Pendulum (TWIP) Robot Localization and Mapping with Nonholonomic Constraint Factors.
    Zhai Y; Zhang S
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural-Dynamic Optimization-Based Model Predictive Control for Tracking and Formation of Nonholonomic Multirobot Systems.
    Li Z; Yuan W; Chen Y; Ke F; Chu X; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):6113-6122. PubMed ID: 29993700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.