These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26441625)

  • 1. Leg mechanics contribute to establishing swing phase trajectories during memory-guided stepping movements in walking cats: a computational analysis.
    Pearson KG; Arbabzada N; Gramlich R; Shinya M
    Front Comput Neurosci; 2015; 9():116. PubMed ID: 26441625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.
    Trank TV; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):678-9. PubMed ID: 8714644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of gastrocnemius muscles during the swing phase of stepping following partial denervation of knee flexor muscles in the cat.
    Tachibana A; McVea DA; Donelan JM; Pearson KG
    Exp Brain Res; 2006 Mar; 169(4):449-60. PubMed ID: 16261338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination of fore and hind leg stepping in cats on a transversely-split treadmill.
    Akay T; McVea DA; Tachibana A; Pearson KG
    Exp Brain Res; 2006 Nov; 175(2):211-22. PubMed ID: 16733696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance.
    Morton SM; Dordevic GS; Bastian AJ
    Exp Brain Res; 2004 May; 156(2):149-63. PubMed ID: 14758452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrective responses to loss of ground support during walking. II. Comparison of intact and chronic spinal cats.
    Hiebert GW; Gorassini MA; Jiang W; Prochazka A; Pearson KG
    J Neurophysiol; 1994 Feb; 71(2):611-22. PubMed ID: 8176430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Updating neural representations of objects during walking.
    Pearson K; Gramlich R
    Ann N Y Acad Sci; 2010 Jun; 1198():1-9. PubMed ID: 20536915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-lasting memories of obstacles guide leg movements in the walking cat.
    McVea DA; Pearson KG
    J Neurosci; 2006 Jan; 26(4):1175-8. PubMed ID: 16436604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
    Pratt CA; Buford JA; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):832-42. PubMed ID: 8714656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of cat paw trajectory during locomotion.
    Klishko AN; Farrell BJ; Beloozerova IN; Latash ML; Prilutsky BI
    J Neurophysiol; 2014 Sep; 112(6):1376-91. PubMed ID: 24899676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive control for backward quadrupedal walking. III. Stumbling corrective reactions and cutaneous reflex sensitivity.
    Buford JA; Smith JL
    J Neurophysiol; 1993 Sep; 70(3):1102-14. PubMed ID: 8229161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic analysis of cat hindlimb stepping.
    Shen L; Poppele RE
    J Neurophysiol; 1995 Dec; 74(6):2266-80. PubMed ID: 8747190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuomotor Transformation for the Lead Leg Affects Trail Leg Trajectories During Visually Guided Crossing Over a Virtual Obstacle in Humans.
    Hagio S; Kouzaki M
    Front Neurosci; 2020; 14():357. PubMed ID: 32390793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forms of forward quadrupedal locomotion. II. A comparison of posture, hindlimb kinematics, and motor patterns for upslope and level walking.
    Carlson-Kuhta P; Trank TV; Smith JL
    J Neurophysiol; 1998 Apr; 79(4):1687-701. PubMed ID: 9535939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do infants adapt to loading of the limb during the swing phase of stepping?
    Lam T; Wolstenholme C; Yang JF
    J Neurophysiol; 2003 Apr; 89(4):1920-8. PubMed ID: 12611979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for obstacle avoidance during walking in the cat.
    Chu KMI; Seto SH; Beloozerova IN; Marlinski V
    J Neurophysiol; 2017 Aug; 118(2):817-831. PubMed ID: 28356468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns.
    Gregor RJ; Smith DW; Prilutsky BI
    J Neurophysiol; 2006 Mar; 95(3):1397-409. PubMed ID: 16207777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous control of two rhythmical behaviors. I. Locomotion with paw-shake response in normal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):171-83. PubMed ID: 3746393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.