These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26441625)

  • 21. Gait-related motor patterns and hindlimb kinetics for the cat trot and gallop.
    Smith JL; Chung SH; Zernicke RF
    Exp Brain Res; 1993; 94(2):308-22. PubMed ID: 8359248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O; Pearson K
    J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):184-95. PubMed ID: 3746394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Memory-Guided Stumbling Correction in the Hindlimb of Quadrupeds Relies on Parietal Area 5.
    Wong C; Wong G; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Feb; 28(2):561-573. PubMed ID: 28013232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hind limb stepping over obstacles in the horse guided by place-object memory.
    Whishaw IQ; Sacrey LA; Gorny B
    Behav Brain Res; 2009 Mar; 198(2):372-9. PubMed ID: 19071161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Object avoidance during locomotion.
    McVea DA; Pearson KG
    Adv Exp Med Biol; 2009; 629():293-315. PubMed ID: 19227506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Swing Velocity Profiles of Small Limbs Can Arise from Transient Passive Torques of the Antagonist Muscle Alone.
    von Twickel A; Guschlbauer C; Hooper SL; Büschges A
    Curr Biol; 2019 Jan; 29(1):1-12.e7. PubMed ID: 30581019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes.
    Ebeling W; Dürr V
    J Exp Biol; 2006 Jun; 209(Pt 11):2199-214. PubMed ID: 16709921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of interjoint coordination during the swing phase of normal gait at different speeds.
    Shemmell J; Johansson J; Portra V; Gottlieb GL; Thomas JS; Corcos DM
    J Neuroeng Rehabil; 2007 Apr; 4():10. PubMed ID: 17466065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-lasting working memories of obstacles established by foreleg stepping in walking cats require area 5 of the posterior parietal cortex.
    McVea DA; Taylor AJ; Pearson KG
    J Neurosci; 2009 Jul; 29(29):9396-404. PubMed ID: 19625530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses.
    McVea DA; Pearson KG
    J Neurophysiol; 2007 Jan; 97(1):659-69. PubMed ID: 17108090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of limb dynamics in the swing phase of locomotion.
    Hoy MG; Zernicke RF
    J Biomech; 1985; 18(1):49-60. PubMed ID: 3980488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.
    Nilsson J; Thorstensson A; Halbertsma J
    Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Minimum energy trajectories of the swing ankle when stepping over obstacles of different heights.
    Chou LS; Draganich LF; Song SM
    J Biomech; 1997 Feb; 30(2):115-20. PubMed ID: 9001931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lesion in the lateral cerebellum specifically produces overshooting of the toe trajectory in leading forelimb during obstacle avoidance in the rat.
    Aoki S; Sato Y; Yanagihara D
    J Neurophysiol; 2013 Oct; 110(7):1511-24. PubMed ID: 23615542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptation to unilateral change in lower limb mechanical properties during human walking.
    Noble JW; Prentice SD
    Exp Brain Res; 2006 Mar; 169(4):482-95. PubMed ID: 16328304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.
    Buford JA; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):756-66. PubMed ID: 2230922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupled and uncoupled limb oscillations during paw-shake response.
    Koshland GF; Hoy MG; Smith JL; Zernicke RF
    Exp Brain Res; 1991; 83(3):587-97. PubMed ID: 2026199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.