These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26441629)

  • 21. Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation.
    Cruz Ulloa C; Sánchez L; Del Cerro J; Barrientos A
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
    von Twickel A; Büschges A; Pasemann F
    Biol Cybern; 2011 Feb; 104(1-2):95-119. PubMed ID: 21327828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
    Rosenbaum P; Wosnitza A; Büschges A; Gruhn M
    J Neurophysiol; 2010 Sep; 104(3):1681-95. PubMed ID: 20668273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Error-Based Learning Mechanism for Fast Online Adaptation in Robot Motor Control.
    Thor M; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2042-2051. PubMed ID: 31395565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generic Neural Locomotion Control Framework for Legged Robots.
    Thor M; Kulvicius T; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4013-4025. PubMed ID: 32833657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of adaptive movement patterns
    Steinbeck F; Nowotny T; Philippides A; Graham P
    Front Comput Neurosci; 2022; 16():948973. PubMed ID: 36465959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of an adaptive swing control into a neuromuscular human walking model.
    Song S; Desai R; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4915-8. PubMed ID: 24110837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation.
    Yang Z; Cameron K; Lewinger W; Webb B; Murray A
    IEEE Trans Neural Netw Learn Syst; 2012 Mar; 23(3):373-84. PubMed ID: 24808545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
    Aoi S; Manoonpong P; Ambe Y; Matsuno F; Wörgötter F
    Front Neurorobot; 2017; 11():39. PubMed ID: 28878645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptive, fast walking in a biped robot under neuronal control and learning.
    Manoonpong P; Geng T; Kulvicius T; Porr B; Wörgötter F
    PLoS Comput Biol; 2007 Jul; 3(7):e134. PubMed ID: 17630828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A neuromechanical model for the neuronal basis of curve walking in the stick insect.
    Knops S; Tóth TI; Guschlbauer C; Gruhn M; Daun-Gruhn S
    J Neurophysiol; 2013 Feb; 109(3):679-91. PubMed ID: 23136343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive Centipede Walking via Synergetic Coupling Between Decentralized Control and Flexible Body Dynamics.
    Yasui K; Takano S; Kano T; Ishiguro A
    Front Robot AI; 2022; 9():797566. PubMed ID: 35450166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
    Mantziaris C; Bockemühl T; Holmes P; Borgmann A; Daun S; Büschges A
    J Neurophysiol; 2017 Oct; 118(4):2296-2310. PubMed ID: 28724783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A neuromechanical model explaining forward and backward stepping in the stick insect.
    Tóth TI; Knops S; Daun-Gruhn S
    J Neurophysiol; 2012 Jun; 107(12):3267-80. PubMed ID: 22402652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity.
    Fischer H; Schmidt J; Haas R; Büschges A
    J Neurophysiol; 2001 Jan; 85(1):341-53. PubMed ID: 11152734
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.