These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 26441857)
1. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis. Zheng C; Ma Y; Wang X; Xie Y; Ali MK; He J Front Microbiol; 2015; 6():908. PubMed ID: 26441857 [TBL] [Abstract][Full Text] [Related]
2. Control of the diadenylate cyclase CdaS in Bacillus subtilis: an autoinhibitory domain limits cyclic di-AMP production. Mehne FM; Schröder-Tittmann K; Eijlander RT; Herzberg C; Hewitt L; Kaever V; Lewis RJ; Kuipers OP; Tittmann K; Stülke J J Biol Chem; 2014 Jul; 289(30):21098-107. PubMed ID: 24939848 [TBL] [Abstract][Full Text] [Related]
3. DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. Gándara C; Alonso JC DNA Repair (Amst); 2015 Mar; 27():1-8. PubMed ID: 25616256 [TBL] [Abstract][Full Text] [Related]
4. An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. Gundlach J; Mehne FM; Herzberg C; Kampf J; Valerius O; Kaever V; Stülke J J Bacteriol; 2015 Oct; 197(20):3265-74. PubMed ID: 26240071 [TBL] [Abstract][Full Text] [Related]
5. Cyclic di-AMP homeostasis in bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. Mehne FM; Gunka K; Eilers H; Herzberg C; Kaever V; Stülke J J Biol Chem; 2013 Jan; 288(3):2004-17. PubMed ID: 23192352 [TBL] [Abstract][Full Text] [Related]
6. Stress-Associated and Growth-Dependent Mutagenesis Are Divergently Regulated by c-di-AMP Levels in Abundiz-Yañez K; Leyva-Sánchez HC; Robleto EA; Pedraza-Reyes M Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613897 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for the inhibition of the Bacillus subtilis c-di-AMP cyclase CdaA by the phosphoglucomutase GlmM. Pathania M; Tosi T; Millership C; Hoshiga F; Morgan RML; Freemont PS; Gründling A J Biol Chem; 2021 Nov; 297(5):101317. PubMed ID: 34678313 [TBL] [Abstract][Full Text] [Related]
8. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Pham TH; Liang ZX; Marcellin E; Turner MS Curr Genet; 2016 Nov; 62(4):731-738. PubMed ID: 27074767 [TBL] [Abstract][Full Text] [Related]
9. All DACs in a Row: Domain Architectures of Bacterial and Archaeal Diadenylate Cyclases. Galperin MY J Bacteriol; 2023 Apr; 205(4):e0002323. PubMed ID: 37022175 [TBL] [Abstract][Full Text] [Related]
10. Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. Commichau FM; Heidemann JL; Ficner R; Stülke J J Bacteriol; 2019 Jan; 201(1):. PubMed ID: 30224435 [TBL] [Abstract][Full Text] [Related]
11. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Römling U Sci Signal; 2008 Aug; 1(33):pe39. PubMed ID: 18714086 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Luo Y; Helmann JD Mol Microbiol; 2012 Feb; 83(3):623-39. PubMed ID: 22211522 [TBL] [Abstract][Full Text] [Related]
13. A σD-dependent antisense transcript modulates expression of the cyclic-di-AMP hydrolase GdpP in Bacillus subtilis. Luo Y; Helmann JD Microbiology (Reading); 2012 Nov; 158(Pt 11):2732-2741. PubMed ID: 22956758 [TBL] [Abstract][Full Text] [Related]
14. The Diadenylate Cyclase CdaA Is Critical for Borrelia turicatae Virulence and Physiology. Jackson-Litteken CD; Ratliff CT; Kneubehl AR; Siletti C; Pack L; Lan R; Huynh TN; Lopez JE; Blevins JS Infect Immun; 2021 May; 89(6):. PubMed ID: 33846120 [No Abstract] [Full Text] [Related]
15. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. Bai Y; Yang J; Zhou X; Ding X; Eisele LE; Bai G PLoS One; 2012; 7(4):e35206. PubMed ID: 22529992 [TBL] [Abstract][Full Text] [Related]
16. Regulatory mechanisms of c-di-AMP synthase from Mycobacterium smegmatis revealed by a structure: Function analysis. Gautam S; Mahapa A; Yeramala L; Gandhi A; Krishnan S; Kutti R V; Chatterji D Protein Sci; 2023 Mar; 32(3):e4568. PubMed ID: 36660887 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of the diadenylate cyclase reaction of DNA-integrity scanning protein A (DisA) and its inhibition by 3'-dATP. Müller M; Deimling T; Hopfner KP; Witte G Biochem J; 2015 Aug; 469(3):367-74. PubMed ID: 26014055 [TBL] [Abstract][Full Text] [Related]
18. Cyclic Di-adenosine Monophosphate Regulates Metabolism and Growth in the Oral Commensal Rørvik GH; Liskiewicz KA; Kryuchkov F; Naemi AO; Aasheim HC; Petersen FC; Küntziger TM; Simm R Microorganisms; 2020 Aug; 8(9):. PubMed ID: 32825526 [TBL] [Abstract][Full Text] [Related]
19. Highly efficient enzymatic preparation of c-di-AMP using the diadenylate cyclase DisA from Bacillus thuringiensis. Zheng C; Wang J; Luo Y; Fu Y; Su J; He J Enzyme Microb Technol; 2013 May; 52(6-7):319-24. PubMed ID: 23608499 [TBL] [Abstract][Full Text] [Related]
20. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. Oppenheimer-Shaanan Y; Wexselblatt E; Katzhendler J; Yavin E; Ben-Yehuda S EMBO Rep; 2011 Jun; 12(6):594-601. PubMed ID: 21566650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]