BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26442030)

  • 1. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements.
    Gayomba SR; Zhai Z; Jung HI; Vatamaniuk OK
    Front Plant Sci; 2015; 6():716. PubMed ID: 26442030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron uptake, signaling, and sensing in plants.
    Liang G
    Plant Commun; 2022 Sep; 3(5):100349. PubMed ID: 35706354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayered regulation of iron homeostasis in Arabidopsis.
    Spielmann J; Fanara S; Cotelle V; Vert G
    Front Plant Sci; 2023; 14():1250588. PubMed ID: 37841618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MdMYB58 Modulates Fe Homeostasis by Directly Binding to the MdMATE43 Promoter in Plants.
    Wang FP; Wang XF; Zhang J; Ma F; Hao YJ
    Plant Cell Physiol; 2018 Dec; 59(12):2476-2489. PubMed ID: 30165667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two bHLH Transcription Factors, bHLH34 and bHLH104, Regulate Iron Homeostasis in Arabidopsis thaliana.
    Li X; Zhang H; Ai Q; Liang G; Yu D
    Plant Physiol; 2016 Apr; 170(4):2478-93. PubMed ID: 26921305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of Arabidopsis Multi-Copper Oxidase-Encoding
    Bernal M; Krämer U
    Front Plant Sci; 2021; 12():688318. PubMed ID: 34707625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.
    Lešková A; Giehl RFH; Hartmann A; Fargašová A; von Wirén N
    Plant Physiol; 2017 Jul; 174(3):1648-1668. PubMed ID: 28500270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Yellow Striped Mutants of
    Chan-Rodriguez D; Walker EL
    Front Plant Sci; 2018; 9():157. PubMed ID: 29515599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling.
    Verbon EH; Trapet PL; Kruijs S; Temple-Boyer-Dury C; Rouwenhorst TG; Pieterse CMJ
    Front Plant Sci; 2019; 10():909. PubMed ID: 31354776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling.
    Kermeur N; Pédrot M; Cabello-Hurtado F
    Methods Mol Biol; 2023; 2642():49-81. PubMed ID: 36944872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots.
    Khan MA; Castro-Guerrero NA; McInturf SA; Nguyen NT; Dame AN; Wang J; Bindbeutel RK; Joshi T; Jurisson SS; Nusinow DA; Mendoza-Cozatl DG
    Plant Cell Environ; 2018 Oct; 41(10):2263-2276. PubMed ID: 29520929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching iron sensors in plants by exploring the link among 2'-OG-dependent dioxygenases, the iron deficiency response and metabolic adjustments occurring under iron deficiency.
    Vigani G; Morandini P; Murgia I
    Front Plant Sci; 2013; 4():169. PubMed ID: 23755060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual versus Combinatorial Effects of Silicon, Phosphate, and Iron Deficiency on the Growth of Lowland and Upland Rice Varieties.
    Chaiwong N; Prom-U-Thai C; Bouain N; Lacombe B; Rouached H
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29562647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron Availability Affects Phosphate Deficiency-Mediated Responses, and Evidence of Cross-Talk with Auxin and Zinc in Arabidopsis.
    Rai V; Sanagala R; Sinilal B; Yadav S; Sarkar AK; Dantu PK; Jain A
    Plant Cell Physiol; 2015 Jun; 56(6):1107-23. PubMed ID: 25759329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis.
    Zhai Z; Gayomba SR; Jung HI; Vimalakumari NK; Piñeros M; Craft E; Rutzke MA; Danku J; Lahner B; Punshon T; Guerinot ML; Salt DE; Kochian LV; Vatamaniuk OK
    Plant Cell; 2014 May; 26(5):2249-2264. PubMed ID: 24867923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the iron-deficiency response by IMA/FEP peptide.
    Tabata R
    Front Plant Sci; 2023; 14():1107405. PubMed ID: 37180394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis.
    Shanmugam V; Wang YW; Tsednee M; Karunakaran K; Yeh KC
    Plant J; 2015 Nov; 84(3):464-77. PubMed ID: 26333047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.
    Eroglu S; Meier B; von Wirén N; Peiter E
    Plant Physiol; 2016 Feb; 170(2):1030-45. PubMed ID: 26668333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches.
    Li W; Lan P
    Front Plant Sci; 2017; 8():40. PubMed ID: 28174585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants.
    Chao ZF; Chao DY
    New Phytol; 2022 Dec; 236(5):1655-1660. PubMed ID: 36093736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.