These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 26442147)
1. The singing vortex. Arndt R; Pennings P; Bosschers J; van Terwisga T Interface Focus; 2015 Oct; 5(5):20150025. PubMed ID: 26442147 [TBL] [Abstract][Full Text] [Related]
2. Compressive spherical beamforming for localization of incipient tip vortex cavitation. Choo Y; Seong W J Acoust Soc Am; 2016 Dec; 140(6):4085. PubMed ID: 28040045 [TBL] [Abstract][Full Text] [Related]
3. Incipient tip vortex cavitation localization using block-sparse compressive sensing. Park M; Park Y; Lee K; Seong W J Acoust Soc Am; 2020 May; 147(5):3454. PubMed ID: 32486828 [TBL] [Abstract][Full Text] [Related]
4. A physics based multiscale modeling of cavitating flows. Ma J; Hsiao CT; Chahine GL Comput Fluids; 2017 Mar; 145():68-84. PubMed ID: 29720773 [TBL] [Abstract][Full Text] [Related]
5. The acoustic emissions of cavitation bubbles in stretched vortices. Chang NA; Ceccio SL J Acoust Soc Am; 2011 Nov; 130(5):3209-19. PubMed ID: 22087993 [TBL] [Abstract][Full Text] [Related]
6. Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor. Xu S; Wang J; Cheng H; Ji B; Long X Ultrason Sonochem; 2020 Oct; 67():105183. PubMed ID: 32474184 [TBL] [Abstract][Full Text] [Related]
7. Role of vortices in cavitation formation in the flow across a mechanical heart valve. Li CP; Lu PC; Liu JS; Lo CW; Hwang NH J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474 [TBL] [Abstract][Full Text] [Related]
8. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number. Soyama H Ultrason Sonochem; 2021 Mar; 71():105389. PubMed ID: 33221624 [TBL] [Abstract][Full Text] [Related]
9. Ship noise management and the ORCA class of ships. Gilroy L Mar Pollut Bull; 2022 Jan; 174():113196. PubMed ID: 34894581 [TBL] [Abstract][Full Text] [Related]
10. Evaluation the possibility of vortex-induced resonance for a multistage pressure reducing valve. Xu D; Ge C; Li Y; Liu Y PLoS One; 2022; 17(4):e0266414. PubMed ID: 35363803 [TBL] [Abstract][Full Text] [Related]
11. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming. Tytell ED J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809 [TBL] [Abstract][Full Text] [Related]
12. Investigation on the Flow Field Entropy Structure of Non-Synchronous Blade Vibration in an Axial Turbocompressor. Zhang M; Hou A Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33279917 [TBL] [Abstract][Full Text] [Related]
13. Measurement and analysis of radiated sound from a low speed fan with a large tip gap. Bilka MJ; Anthoine J; Schram C J Acoust Soc Am; 2014 May; 135(5):2591-600. PubMed ID: 24815243 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of vortex dynamics in type-II superconductors in oscillating magnetic field using time-dependent Ginzburg-Landau equations. Jafri HM; Ma X; Zhao C; Liang D; Huang H; Liu Z; Chen LQ J Phys Condens Matter; 2017 Dec; 29(50):505701. PubMed ID: 28925380 [TBL] [Abstract][Full Text] [Related]
15. Numerical investigation of cavitation generated by an ultrasonic dental scaler tip vibrating in a compressible liquid. Manmi KMA; Wu WB; Vyas N; Smith WR; Wang QX; Walmsley AD Ultrason Sonochem; 2020 May; 63():104963. PubMed ID: 31986331 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor. Xia G; You W; Manickam S; Yoon JY; Xuan X; Sun X Ultrason Sonochem; 2024 May; 105():106849. PubMed ID: 38513544 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of circular arrangements of vorticity in two dimensions. Swaminathan RV; Ravichandran S; Perlekar P; Govindarajan R Phys Rev E; 2016 Jul; 94(1-1):013105. PubMed ID: 27575215 [TBL] [Abstract][Full Text] [Related]
18. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening. Bai F; Long Y; Saalbach KA; Twiefel J Ultrasonics; 2019 Mar; 93():130-138. PubMed ID: 30508727 [TBL] [Abstract][Full Text] [Related]
19. Effects of cavitation on Kármán vortex behind circular-cylinder arrays: A molecular dynamics study. Asano Y; Watanabe H; Noguchi H J Chem Phys; 2020 Jan; 152(3):034501. PubMed ID: 31968948 [TBL] [Abstract][Full Text] [Related]
20. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence. Tsai YY; I L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013106. PubMed ID: 25122400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]