These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 26442287)
41. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Yao GH; Liang RP; Yu XD; Huang CF; Zhang L; Qiu JD Anal Chem; 2015 Jan; 87(2):929-36. PubMed ID: 25494977 [TBL] [Abstract][Full Text] [Related]
42. Aptamer-based colorimetric detection of platelet-derived growth factor using unmodified gold nanoparticles. Chang CC; Wei SC; Wu TH; Lee CH; Lin CW Biosens Bioelectron; 2013 Apr; 42():119-23. PubMed ID: 23202340 [TBL] [Abstract][Full Text] [Related]
43. An ultra-sensitive colorimetric Hg(2+)-sensing assay based on DNAzyme-modified Au NP aggregation, MNPs and an endonuclease. Li C; Dai P; Rao X; Shao L; Cheng G; He P; Fang Y Talanta; 2015 Jan; 132():463-8. PubMed ID: 25476332 [TBL] [Abstract][Full Text] [Related]
44. Dual catalytic DNA circuit-induced gold nanoparticle aggregation: An enzyme-free and colorimetric strategy for amplified detection of nucleic acids. Ravan H; Amandadi M; Hassanshahian M; Pourseyedi S Int J Biol Macromol; 2020 Jul; 154():896-903. PubMed ID: 32169450 [TBL] [Abstract][Full Text] [Related]
45. Dual sensing reporter system of assembled gold nanoparticles toward the sequential colorimetric detection of adenosine and Cr(III). Zhu R; Song J; Zhou Y; Lei P; Li Z; Li HW; Shuang S; Dong C Talanta; 2019 Nov; 204():294-303. PubMed ID: 31357297 [TBL] [Abstract][Full Text] [Related]
46. Colorimetric and visual mercury(II) assay based on target-induced cyclic enzymatic amplification, thymine-Hg(II)-thymine interaction, and aggregation of gold nanoparticles. Song X; Wang Y; Liu S; Zhang X; Wang H; Wang J; Huang J Mikrochim Acta; 2019 Jan; 186(2):105. PubMed ID: 30637516 [TBL] [Abstract][Full Text] [Related]
47. Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles. Chen Z; Huang Y; Li X; Zhou T; Ma H; Qiang H; Liu Y Anal Chim Acta; 2013 Jul; 787():189-92. PubMed ID: 23830438 [TBL] [Abstract][Full Text] [Related]
48. Colorimetric determination of DNA using an aptamer and plasmonic nanoplatform. Sang F; Yin S; Pan J; Liu D; Zhang Z Mikrochim Acta; 2020 Jun; 187(7):393. PubMed ID: 32556616 [TBL] [Abstract][Full Text] [Related]
49. An enzyme-free electrochemical sandwich DNA assay based on the use of hybridization chain reaction and gold nanoparticles: application to the determination of the DNA of Helicobacter pylori. Lv MM; Fan SF; Wang QL; Lv QY; Song X; Cui HF Mikrochim Acta; 2019 Dec; 187(1):73. PubMed ID: 31863213 [TBL] [Abstract][Full Text] [Related]
50. Chronocoulometric aptamer based assay for staphylococcal enterotoxin B by target-triggered assembly of nanostructured dendritic nucleic acids on a gold electrode. Chen X; Liu Y; Lu Y; Xiong X; Li Y; Liu Y; Xiong X Mikrochim Acta; 2019 Jan; 186(2):109. PubMed ID: 30637509 [TBL] [Abstract][Full Text] [Related]
51. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Chen GH; Chen WY; Yen YC; Wang CW; Chang HT; Chen CF Anal Chem; 2014 Jul; 86(14):6843-9. PubMed ID: 24932699 [TBL] [Abstract][Full Text] [Related]
52. Amperometric aptasensor for thrombin detection using enzyme-mediated direct electrochemistry and DNA-based signal amplification strategy. Bai L; Chai Y; Yuan R; Yuan Y; Xie S; Jiang L Biosens Bioelectron; 2013 Dec; 50():325-30. PubMed ID: 23880107 [TBL] [Abstract][Full Text] [Related]
53. [Membrane transfer-based colorimetric DNA detection using enzyme modified gold nanoparticles]. Li H; Jing F; Gao Q; Jia C; Chen J; Jin Q; Zhao J Sheng Wu Gong Cheng Xue Bao; 2010 Aug; 26(8):1135-42. PubMed ID: 21090120 [TBL] [Abstract][Full Text] [Related]
54. A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Zhang K; Cao J; Wu Y; Hu F; Li T; Wang Y; Gan N Mikrochim Acta; 2019 Jan; 186(2):120. PubMed ID: 30666478 [TBL] [Abstract][Full Text] [Related]
55. Ultrasensitive colorimetric carcinoembryonic antigen biosensor based on hyperbranched rolling circle amplification. Liang K; Zhai S; Zhang Z; Fu X; Shao J; Lin Z; Qiu B; Chen GN Analyst; 2014 Sep; 139(17):4330-4. PubMed ID: 24996292 [TBL] [Abstract][Full Text] [Related]
56. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification. Luan Q; Gan N; Cao Y; Li T J Agric Food Chem; 2017 Jul; 65(28):5731-5740. PubMed ID: 28654744 [TBL] [Abstract][Full Text] [Related]
57. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Zhang S; Xia J; Li X Anal Chem; 2008 Nov; 80(22):8382-8. PubMed ID: 18939854 [TBL] [Abstract][Full Text] [Related]
58. Label-free colorimetric aptasensor for IgE using DNA pseudoknot probe. Chang CC; Chen CY; Zhao X; Wu TH; Wei SC; Lin CW Analyst; 2014 Jul; 139(13):3347-51. PubMed ID: 24821053 [TBL] [Abstract][Full Text] [Related]
59. Inhibitory effect of target binding on hairpin aptamer sticky-end pairing-induced gold nanoparticle assembly for light-up colorimetric protein assay. Wu ZS; Lu H; Liu X; Hu R; Zhou H; Shen G; Yu RQ Anal Chem; 2010 May; 82(9):3890-8. PubMed ID: 20394414 [TBL] [Abstract][Full Text] [Related]
60. Enhanced detection of acetamiprid Liu X; Li M; Wang H; Yang L Anal Methods; 2024 Jul; 16(26):4301-4309. PubMed ID: 38887921 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]